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Abstract: The demands of larger memory capacity in high-performance computing
systems have motivated the researchers to explore alternatives of DRAM (dynamic
random access memory). Since PCM (phase change memory) provides high-density, good
scalability and non-volatile data storage, it has received significant amount of attention
in recent years. A crucial bottleneck in wide-spread adoption of PCM, however, is that
its write latency and energy are very high. Recently, several architecture and system-level
techniques have been proposed to address this issue. In this paper, we survey several
techniques for managing power consumption of PCM. We also classify these techniques
based on their characteristics to highlight their similarities and differences. The aim of
this paper is to provide insights to researchers into working of PCM power-management
techniques and also motivate them to propose even better techniques for designing future
‘green’ PCM-based main memory systems.
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1 Introduction

Recent years have witnessed increasing power costs of
memory subsystems, which have also led to increased
costs of operating large scale supercomputers and data
centers. Further, several modern computing systems
provide several 24×7 services and execute data-centric
computing applications, which demand larger capacity
memory systems. Since DRAM has low-density, DRAM-
based memory system may contribute as much as 40%
in the total processor power [1–3]. Table 1 shows
the power consumption breakdown for an IBM p670
processor [1]. Here the power under the row “processor”
includes power of processor cores and L1 and L2 caches,
cache controllers, and directories [1] etc. Also, the
power under the row “memory” includes the power
consumption of off-chip L3 caches, DRAM memory,
memory controllers, and their interface chips. The power

is measured when the system is idle and these values
are expected to be same when the system is active,
due to the performance-optimized design and use of
system-level power-management features [1]. It is clear
that memory system may consume very large amount
of power in commercial processors. Further, the scaling
of DRAM to smaller feature size has become difficult
[4] and hence, computer architects and designers have
explored alternative memory technologies that provide
high density and can balance the costs against capacities.

Phase change memory (PCM, also called phase
change RAM or PCRAM) is an emerging technology,
which has recently received a lot of attention. PCM is
a non-volatile device which has high retention property
(over 10 years) and very good operation characteristics
and scalability [5]. PCM has high storage density and
PCM prototypes with feature size as small as 3nm
have been fabricated [5]. It also has higher write
endurance than the flash memory [2, 6], although its
write endurance is several orders of magnitude worse
than that of DRAM. The read power and delay of PCM



Table 1 Power consumption breakdown for an IBM p670
processor (large configuration) [1].

Power Percentage
(watt)

Processor 840 28.3%
Memory 1223 41.1%
I/O etc. 90 3.0%

Processor and memory fans 676 22.7%
I/O component fans 144 4.8%

Total 2973 100%

are in the same range as that of DRAM, however, its
write power is significantly higher than that of DRAM [7,
8]. Writing to a PCM cell requires high current density
over a large period of time. Hence, to ensure correct
operation, hard limits on the number of simultaneous
writes must be enforced which limits write throughput
and overall performance. Thus, failure to save write
energy may nullify the energy saving advantage gained
due to low leakage power of PCM.

Further, large power consumption of PCM can have
deleterious effect on its operation. It may lead to
violating power limits, which may in turn lead to
voltage drops in the power supply or excessive currents
flowing through the processor. It may increase the
temperature which may further increase the leakage
energy consumption of other components of the system.
It may also create logical errors, incomplete PCM phase
transitions, PCM read errors, etc. which may lead to
chip failures or chip-aging. Thus, power management of
PCM is extremely important to ensure its wide-spread
adoption and also avoid the problems due to heating of
the system.

In this paper, we review several architectural
and system-level techniques for managing the power
consumption of PCM. We classify these techniques
based on their properties to highlight their similarities
and differences. We only discuss the essential idea
of the techniques and not the quantitative results,
since different techniques have been evaluated
using different platforms. Also, we do not include
device/fabrication level approaches for improving PCM
performance/power. The aim of this paper is to provide
a synthetic overview of the research field of PCM
power management. We believe that this overview will
encourage researchers to propose even better techniques
for managing PCM based main memory systems.

The rest of the paper is structured as follows. Section
2 provides a background on phase change memory.
Section 3 provides an overview of power management
techniques and related research works on PCM. Section
4 discusses some of these power management techniques
in detail. Finally, Section 5 discusses the future work and
provides the conclusion.

Table 2 Overview and classification of research works on
PCM

Classification References

Architectural Techniques
Hybrid PCM-DRAM architecture [10, 12–35]
Data-migration in DRAM-PCM hybrid

memory
[2, 12, 15, 17, 18,
20]

Read-before write techniques [6, 7, 36–41]
Reducing PCM write-traffic [42–45]
Task-scheduling techniques [19, 34]
PCM-aware cache management [9, 46–50]
Data-compression based techniques [21, 51]
Memory access scheduling techniques [15, 28, 35, 52]
Techniques utilizing asymmetry in write

times
[38, 53–56]

Data-encoding based techniques [36, 38, 41, 42]
Novel PCM memory architecture [57, 58]
Managing multi-level cell (MLC) PCM [36, 39, 59–61]

Application Domain
GPU [14, 24]
Embedded systems [44, 62–65]
Real-time systems [66]
Video applications [40, 67]
Designing caches [68–75]

Others
Simulator and modeling tools [76–79]

2 A Brief Background on Phase Change
Memory

We briefly review the design of PCM and refer the
reader to previous works for more details [9, 10]. A
PCM cell comprises an NMOS access transistor and
a storage resistor which is made of a chalcogenide
alloy [11, 12]. To store a binary value on PCM, heat
is applied to it which transitions the physical state
of the alloy with particular resistances. When the
alloy is heated to a very high temperature (greater
than 600 degree Celsius) and quickly cooled down,
it transitions into an amorphous substance with high
electrical resistance which represents binary “0”. On the
other hand, when the alloy is heated to a temperature
between the crystallization (300 degree Celsius) and
melting (600 degree Celsius) points and cools down
slowly, it crystallizes to a physical state with lower
resistance, which represents binary “1”. Since the state
of chalcogenide is retained in the absence of electrical
power, PCM is non-volatile.

It is clear that while DRAM stores data as a small
amount of electric charge in a capacitor, the PCM’s
approach to storing data is fundamentally different. This
difference gives PCM the potential for better technology
scaling, leading to higher density, lower cost per bit,
and larger capacity memory than DRAM. The difference
in resistance values between the two states of PCM is
typically 3 orders of magnitude. PCM memories achieve
high density by exploiting this high resistance range to
store multiple bits in a single cell, this structure is known
as multi-level cell or MLC. PCM is byte-addressable and
is immune to radiation-induced soft errors.



3 An Overview of Power Management
Techniques for PCM Main Memory

To meet the demands of power-budget, power
management techniques have been proposed for all range
of computing systems, ranging from embedded systems
to data-centers and supercomputers [80] and for all
components of computing systems, such as cache and
main memory [81, 82]. Specifically, in the context of
PCM main memory systems, computer architects have
proposed several power management techniques. Some
researchers have proposed hybrid PCM-DRAM design
[10, 12–34]. These techniques aim to achieve the best of
both DRAM and PCM, viz. the short latency and high
write endurance of DRAM and low leakage power and
high density of PCM.

Some techniques convert PCM write operation to
read-before-write (or data comparison write) operation
to reduce write energy [6, 7, 36–41]. These techniques,
referred to as “differential write” based techniques, read
out the old value in the PCM array before writing the
new one and compare them to write only those bits
that need to change. Some researchers propose task-
scheduling based techniques to address the challenges in
hybrid DRAM-PCM based main memory [19, 34].

Several other techniques are based on reducing write-
traffic to PCM memory, e.g. [42–45]. Some researchers
propose last level cache management techniques for
improving energy efficiency of PCM main memory [46,
47]. Other researchers have proposed compression based
techniques to reduce write-traffic to PCM [21, 51].
Several other techniques aim to address the write latency
issue, and its harmful impact on read latency arising
due to bank conflicts and try to utilize write locality to
coalesce all possible changes to the data by using buffers
before they are finally written to PCM [15, 52]. PCM
also offers the ability to store multiple bits per cell and
several researchers propose techniques to achieve this in
an energy efficient manner [36, 39, 59–61].

Since PCM has much smaller leakage energy than
DRAM, recently, there has been a significant increase
in application-areas of PCM. PCM has been evaluated
in context of GPUs (graphics processing unit) [14, 24],
embedded systems [44, 62–65], real-time systems [66],
video applications [40, 67]) and so on. In fact, use of
PCM has also been explored for designing caches and
the insights gained from these techniques can be applied
for managing PCM main memory also [68–75]. Finally,
some researchers have proposed architecture or device-
level simulators for studying non-volatile memories [76–
79], which facilitate study of PCM. Table 2 provides an
overview of research works on PCM.

4 Power Management Techniques

In this section, we discuss some power management
techniques. Many of the techniques are orthogonal to

each other and hence, can be synergistically integrated
with each other.

4.1 Hybrid PCM-DRAM Architecture

Several authors propose PCM-DRAM hybrid main
memory system architectures, which aim to utilize
the best features of different technologies, such as
performance, cost, energy, reliability, endurance. We now
discuss a few of these architectures.

Qureshi et al. [10] propose a hybrid memory design
where PCM memory is augmented with a small DRAM
that acts as a “page cache” for the PCM memory.
The page cache buffers frequently accessed pages and
thus helps performance and improves PCM endurance
by reducing the number of writes to PCM with write
combining and coalescing. Further, at cache line level,
only the lines modified in a page are written to the main
memory, which reduces the effective number of writes
to the main memory. Finally, at block-level, swapping
is used for achieving wear-leveling. Their technique also
reduces the page faults which improves the performance
of the system and leads to saving of energy. However,
when the applications have poor locality, the advantage
of using page cache reduces.

Zhang et al. [15] study PCM in the context of 3D die-
stacking. Using analytical and circuit-level modeling for
PCM characterization, they show that the programming
power of PCM cells can be reduced as the chip
temperature is elevated. This high-temperature friendly
operation of PCM can be advantageously used to design
3D die-stacking memory systems. They propose a hybrid
memory design where a large portion of PCM is used as a
primary memory space and a small portion of DRAM is
used as a write-buffer to reduce the number of writes to
PCM. They also propose an OS-level paging scheme that
takes into account the memory reference characteristics
of applications and migrates the hot-modified pages from
PCM to DRAM so that the lifetime degradation of PCM
is alleviated. Since access to DRAM takes much less
energy than that to PCM, their technique also improves
the energy efficiency of the memory system.

Lee et al. [18] propose a memory management
technique for hybrid PCM-DRAM memory to hide
the slow write performance of PCM. Their technique
uses methods such as dirty bit clearing and frequency
accumulation to accurately estimate future write
references. They observe that using write history alone
performs better than using both read and write history
in estimating future write references. Also, by using
temporal locality and frequency characteristics, more
accurate estimates of write references can be obtained.
Based on these observations, they propose a page
replacement algorithm called CLOCK-DWF (CLOCK
with dirty bits and write frequency) that reduces the
number of PCM write operations by using DRAM
to absorb most of the write references. Reduction in
number of writes to PCM translates into improved
energy efficiency.



Seok et al. [20] propose a migration based page
caching technique for PCM-DRAM hybrid main memory
system. Their technique aims to overcome the problem
of the long latency and low endurance of PCM. For this,
read-bound access pages are kept in PCM and write-
bound access pages are kept in DRAM. Their technique
uses separate read and write queues for both PCM and
DRAM and uses page monitoring to make migration
decisions. Write-bound pages are migrated from PCM to
DRAM and read-bound pages are migrated from DRAM
to PCM. The decision to migrate is taken as follows:
when a write access is hit and the accessed page is in
PCM write queue, it is migrated. Similarly, if a read
access is hit and the accessed page is in the DRAM read
queue, it is migrated.

Ramos et al. [12] propose a PCM-DRAM hybrid
design for improving energy efficiency of main memory.
Their technique uses a hardware-driven page placement
policy. Their policy leverages the memory controller
to monitor program access patterns and uses this
information to migrate pages between DRAM and PCM,
and translate the memory addresses coming from the
cores. Further, the operating system periodically updates
its page mappings based on the translation information
used by the memory controller. Since most frequently
accessed pages reside in DRAM, the high write latency
of accessing PCM is avoided, which also improves
performance and saves energy.

Dhiman et al. [2] propose a hybrid main memory
system composed of DRAM and PCM. Their memory
system exposes DRAM and PCM addressability to the
software. In their technique, data placement is performed
based on the write frequency to data. If the number of
writes to a PCM page exceeds a threshold, the contents
of the page are copied to another page (either in DRAM
or PCM) for achieving PCM wear-leveling. Movement of
hot pages to DRAM leads to saving of energy due to
faster and more energy efficient DRAM accesses.

Liu et al. [16] study the variable partitioning
problem on a hybrid main memory designed with
PCM and DRAM for DSP systems. They propose
ILP (integer linear programming) formulations and
heuristic algorithms, such that the energy efficiency
of PCM can be leveraged while also minimizing the
performance and lifetime degradation caused by PCM
writes. The limitation of this approach is that the
ILP formulation may not capture all the factors. Also,
several approximations may be required for managing its
complexity and simplifying the model.

In context of PCM-DRAM hybrid main memory,
Meza et al. [27] propose a technique for efficiently
managing the metadata (such as tag, replacement-policy
information, valid, and dirty bits) for data in a DRAM
cache at a fine granularity. Their technique uses the
observation that storing metadata off-chip in the same
row as their data can exploit DRAM row buffer locality.
Further, it also reduces the access latency from two row
buffer conflicts (one for the metadata and another for
the datum itself). Based on this, their technique only

caches the metadata for recently accessed rows on-chip
using a small buffer. Since metadata needed for data with
temporal or spatial locality is cached on-chip, it can be
accessed with the same latency as an SRAM tag store.
This provides better energy efficiency than using a large
SRAM tag store.

Yoon et al. [28] propose row-buffer locality aware
caching policies for hybrid PCM-DRAM main memories.
Their technique works on the observation that both
DRAM and PCM have row buffers, with (nearly) same
latency and bandwidth. However, the cost of row buffer
misses in terms of latency, bandwidth, and energy is
much higher in PCM than in DRAM. Based on this, their
technique avoids allocating in PCM data that frequently
causes row buffer misses. Such data are allocated
(cached) in DRAM, whereas the data that frequently
hits in the row-buffer are stored in PCM. Further, since
PCM has much higher write latency/power than read
latency/power, their technique uses a caching policy such
that the pages that are written frequently are more likely
to stay in DRAM.

Tian et al. [19] present a task-scheduling based
technique for addressing the challenges of hybrid DRAM-
PCM main memory. They study the problem of task-
scheduling, assuming that a task should be entirely
placed in either PCM bank or DRAM bank. Their
approach works for different optimization objectives such
as 1. minimizing the energy consumption of hybrid
memory for a given PCM and DRAM size and given
PCM endurance 2. minimizing the number of writes
to PCM for a given PCM and DRAM size and given
threshold on energy consumption and 3. minimizing
PCM size for a given DRAM size, given threshold on
energy consumption and PCM endurance.

Zhou et al. [35] propose a writeback-aware bandwidth
partitioning scheme for hybrid DRAM-PCM main
memory system. Due to the slow writes to PCM,
the bandwidth to PCM acts as a bottleneck. Their
technique uses a writeback-aware analytical model to
derive the allocation strategy for bandwidth partitioning
of PCM. Using this, PCM service cycles are partitioned
among applications to improve performance and energy
efficiency. They also use a scheme which dynamically
selects the partitioning weights to different applications.

4.2 Read-before Write Techniques

Several authors utilize the fact that reads from PCM
are significantly faster than writes to PCM. Thus, by
reading the data before writing and taking intelligent
action, write operations can be partially or fully avoided,
which leads to saving of energy. The limitation of these
techniques is that the amount of improvement which
can be achieved using them depends on the data-pattern
and bit-level variations. Also, for these techniques to
be effective, the latency and energy cost of the read
operation must be significantly lower than that of the
write operation. We now summarize a few of these
techniques.



Zhou et al. [8] propose a technique which works by
avoiding redundant bit writes to PCM. Their technique
performs a read before write, and writes only those bits
to PCM which have changed. They also propose wear-
leveling techniques which uniformly spread the writes
to PCM. Taken together, these techniques significantly
reduce the write to PCM main memory which improves
its energy efficiency and lifetime.

Cho et al. [6] propose a technique named, Flip-N-
Write to improve PCM write bandwidth, write energy,
and write endurance under an instantaneous write power
constraint. Their technique works on the observation
that many bit-writes to PCM are redundant. Their
technique replaces a write operation with read-modify
write operation to skip writing a bit if the bit being
written is same as the originally stored bit. Further,
to restrict the maximum number of bits which are
written, they use a “flip” bit. If storing the flipped value
of data requires less number of bit-write operations,
their technique stores the data in flipped form and
changes the flip bit to ON. Using their technique, the
write bandwidth can be potentially doubled, which also
improves the write endurance and reduces the write
energy. Compared to the redundant-bit write-avoidance
technique of [8], Flip-N-Write introduces the additional
overhead of the flip bit and retrieving the original data
when the flip bit is ON.

Xu et al. [42] propose data manipulation techniques
to reduce the write energy of PCM main memory. Their
technique works on the observation that PCM read
incurs much less energy than PCM writes. Also, write of
different value to a PCM cell incurs significantly different
energy. Their technique uses selective-XOR operations to
bias the data value distribution. For a given word to be
written and originally stored word, their technique finds
an optimal bit-pattern such that writing a XOR-masked
value of word to be written with bit pattern leads to
minimum write energy.

Jacobvitz et al. [41] propose a technique named
FlipMin, which uses coset coding to reduce the number
of writes to main memory. Coset coding performs a
one-to-many mapping from each dataword to a coset of
vectors. Using this, for each write, their technique selects
a vector which minimizes the number of bits that must
flip. This reduces the write-traffic to PCM main memory,
which also translates into saving of energy. They have
shown that Flip-N-Write is a degenerate instance of
FlipMin. Thus, FlipMin provides a generalization of
Flip-N-Write, which is one of its advantage. However, the
extra flexibility comes at the cost of additional overhead
of finding suitable coset of vectors.

Hay et al. [4] propose a technique to reduce write
power consumption of PCM banks. Their technique is
based on the observation that typically only a small
portion of the bits (for example, less than 25% on
average) are written to which consume power. Their
technique monitors the number of bits that will change
on a write and hence, need to be written. This gives
an estimate of the number of bits and hence, amount

of power consumed in a write. Then, to not exceed the
power budget, the memory controller issues writes only
when there is enough power to support them.

Fang et al. [40] propose a technique called “SoftPCM”
which utilizes the error tolerance characteristic of video
applications to relax the accuracy of write operations. It
is well-known that several multimedia applications have
the inherent ability of error tolerance [83]. Thus, a slight
error in multimedia data may not be perceived by the
human end-users. Their technique leverages this fact and
provisions that if the stored old data in PCM are very
close to the new data to be written, the write operation
is cancelled and the old data are taken as the new
data. This leads to significant reduction in write-traffic
which also reduces the energy consumption of PCM. The
difference between SoftPCM and the other techniques
is that SoftPCM may introduce data-errors which may
not be tolerable in several application domains. Other
techniques do not introduce such errors. Thus, SoftPCM
is only useful for those workloads or application domains,
which are tolerant to minor errors in the data.

4.3 Techniques for Reducing PCM Write Traffic

As discussed before, the write latency and energy of
PCM are significantly higher than that of DRAM.
Towards this, researchers have proposed techniques
which reduce the number of writes to PCM memory. The
reduction in write-traffic improves the performance and
also reduces the dynamic energy of PCM main memory.
Note that redundant writes may be avoided by either
actual comparison with originally stored data [6, 7, 36–
41] or using flags which track whether the portions of
the data being written have actually changed and then
writing only the changed data-words [10, 43]. We now
discuss a few techniques for reducing PCM write-traffic.

Hu et al. [44] propose a technique for reducing the
number of writes to PCM main memory. Their technique
is based on data migration and re-computation. In an
embedded CMP (chip multiprocessor) having scratch-
pad memory, their technique migrates data to the
scratch-pad memory of a different core to avoid write-
backs of shared data. Thus, by temporarily storing
the data on scratch-pad, their technique reduces the
number of write-backs. Their technique uses program
analysis to determine when and where the data should
be migrated. They also propose data re-computation
to reduce the number of write activities by discarding
the data which should have been written back to the
main memory and recomputing these data when they
are needed. They model the problem of data migration
as a shortest path problem. Also, they propose an
approach to find the optimal data migration path with
minimal cost for both dirty data and clean data. The
limitation of this technique is that in performance-
critical systems, recomputing the data may introduce
unacceptable latency overheads. Also, program analysis
may not be feasible in all scenarios.



Huang et al. [45] propose a register-allocation based
technique with re-computation to reduce the number
of store instructions to non-volatile memory. Register
allocation refers to multiplexing a large number of target
program variables onto a small number of physical
registers. The less the number of physical registers
a processor contains, the more number of spills will
be generated. Each spill is mapped to one store
instruction and one (or few) load instructions during
the compilation process. Traditional register allocation
process does not distinguish read and write activities
and does not try to minimize writes. Huang et al. use
graph-coloring approach to extend traditional register
allocation technique with re-computation to reduce
non-volatile memory write activities by reducing store
instructions. Their technique discards a set of carefully-
selected actual spills and re-computes them when they
are needed.

Xia et al. [43] propose a technique for reducing writes
to PCM main memory. Their technique works on the
observation that a large fraction of words in a cache line
being written back to memory are not actually modified.
Their technique utilizes the burst writes of unmodified
data and consolidates multiple writes targeting the same
row into one write. Their technique records whether a
data-word is modified and propagates this information
to the memory controller. Their technique consolidates
those writes that access the same row of the same bank,
have no read command between them that accesses the
same column and also fulfill the condition that the sum
of modified data blocks of these write commands is
equal to or less than the burst length. The saving of
time due to write-consolidation leads to improvement in
energy efficiency of the memory system. The difference
between the technique of [43] and other redundant-write
avoidance techniques, such as Flip-N-Write [6] is that the
former reduces the writes at the level of 8-byte words,
while the latter ones reduce it at the level of individual
bits.

4.4 Techniques Utilizing Asymmetry in Write
Times

Due to the physical properties of PCM material, the
latency and energy of writing a “one” to PCM array is
different from that of writing a “zero”. This introduces
inefficiency in PCM write, since the total write time is
decided by the slower of the two write operations. Several
techniques work on this observation and aim to remove
this inefficiency. This leads to improvement in energy
efficiency and performance of PCM memory systems. We
now discuss some of these techniques.

Mirhoseini et al. [38] propose a coding-level technique
for saving PCM energy, which is based on the observation
that PCM set and reset energy costs are not equal.
Their technique aims at minimizing the energy cost
of rewriting to PCM by designing low overhead data
encoding methods. Their encoding scheme utilizes
PCM bitwise manipulation ability during the word

overwrites such that only the bits which are changing
for the new word compared to the original word would
require overwriting. They propose an ILP (integer
linear programming) method and employ dynamic
programming to produce codes for uniformly distributed
data. The limitation of data-encoding based techniques,
such as [36, 38, 41, 42] is that encoding and decoding
of data may introduce non-trivial overheads in terms of
hardware and latency.

Yue et al. [55] a two-stage-write scheme for reducing
PCM write latency and the energy consumption. Their
scheme works on the observation that in PCM, writing
a one takes longer time but less electrical current than
writing a zero. Based on this, their scheme distinguishes
writing the bit zero and writing the bit one by dividing
a write into two stages. In the writing zero stage, all
zeros are written at a fast speed. In writing one stage,
all ones are written with increased parallelism such
that the power constraint is not violated. This becomes
possible since writing a one takes much less electric
current than writing a zero. Thus, two-stage-write can
effectively reduce write latency to PCM array. This
improves the performance and also reduces the energy
consumption. The difference between the work of [55]
and [4] is that the former accounts for the difference
between response times and power consumptions for
writing a zero and a one, while the latter minimizes
the write power requirement by tracking the number of
modified bits in a block.

Qureshi et al. [53] propose a technique named PreSet
to alleviate the problem of slow writes. Their technique
works on the observation that PCM writes are slow only
in one direction (SET operation) and are almost as fast
as reads in the other direction (RESET operation). Thus,
a write operation to a line in which all memory cells
have been SET before the write will consume much less
time. Based on this, their technique pro-actively SETs
all the bits in a given memory line much before the
anticipated write to that memory line. As soon as a line
becomes dirty in the cache, their technique initiates a
SET request for that line, which allows a large window of
time for the SET operation to complete. The reduction
in effective write latency of PCM also leads to saving of
energy. The difference between the work of [53] and [55]
is that the former exploits only ‘time’ asymmetry while
the latter exploits both ‘time’ and ‘energy’ asymmetry of
write operations. Also, PreSet may increase write-traffic
to main memory, while the technique of Yue et al. does
not generate extra write-traffic to main memory.

4.5 Memory Access Scheduling Techniques

Several researchers propose architectural techniques to
manage accesses to main memory with a view to
optimize performance and save energy. While the read-
before-write techniques discussed above aim to reduce
writes to PCM at the level of bits and depend on
‘difference’ between new and originally stored data,
memory access scheduling techniques reduce writes at



the level of memory system or memory devices and do
not depend on the difference between new and originally
stored data. The discussion of a few techniques follows.

Lee et al. [52] propose using multiple row-buffers
inside a PCM chip, which reduces the read latency and
also the write energy through write coalescing. Multiple
writes to the same location are absorbed in the buffers,
thus resulting in much smaller number of write-backs to
the PCM array. They also propose a technique which
uses multiple dirty bits in the cache blocks to enable
partial writes. Using this, the number of bit updates are
reduced by not writing untouched, clean data portion in
a dirty cache block to the main memory when the cache
block is replaced. Their techniques save PCM energy and
also increase the lifetime of PCM.

Qureshi et al. [84] propose a write cancellation
and write pausing technique to indirectly improve the
PCM read performance. Although a higher value of
write latency can be tolerated using buffers and large
write bandwidth, once a write request is scheduled for
service to a PCM bank, a subsequent read access to
the same bank needs to wait until the write access
has completed. Thus, the slow write can increase the
effective latency of read accesses and since read accesses
are latency-critical, this may severely affect the program
performance. Write cancellation policy aborts an on-
going write if a read request arrives to the same bank
and the write operation is not close to completion. It
avoids aborting an ongoing write that has completed
more than a threshold percentage of its service time and
this threshold can be adapted during runtime.

A limitation of write-cancellation technique is that
it requires some writes to be re-executed which incurs
power and bandwidth overhead. To avoid this overhead,
Qureshi et al. [84] propose write pausing technique. This
technique utilizes fundamental characteristic of PCM
that most multi-bit PCM devices use iterative write
algorithms. In each iteration data are written and the
current state of the device is compared with the desired
state. Write pausing allows iterative write algorithms to
potentially pause a write request at the end of each write
iteration, complete a pending read request, and then
resume the paused write request.

4.6 Minimizing PCM Main Memory Power by
Managing Caches

In the memory hierarchy of modern processors, main
memory and caches exist close to each other and thus,
intelligent management of caches can translate into
optimization of performance and energy efficiency at
main memory. The design goal of these techniques is to
minimize cache miss-rate and/or writebacks to reduce
the accesses to memory, which leads to saving in energy
of memory. Several researchers propose techniques for
this, we now discuss a few of them.

Ferreira et al. [47] propose a cache replacement policy
for saving PCM main memory energy. Their approach
aims to reduce the write-back traffic to main memory.

The policy is called N -Chance where N can be varied.
This policy evicts the least recently accessed clean page
from cache, unless all of the N least recently accessed
pages are dirty, if so, it evicts the least recently accessed
page. For the case when N = 1, this policy becomes
the conventional LRU (least-recently used) policy. They
have shown that for a proper choice of N , their policy
can be significantly better than the LRU policy.

Fedorov et al. [48] propose a technique for
simultaneously reducing both the miss rate and
writeback rate in the LLC to save PCM main memory
power. Their technique works on the observation that
on a miss, replacing a clean block is advantageous than
replacing a dirty LRU block, since it reduces the number
of writeback operations. This, however, also has the
disadvantage since the replaced clean cache block may
generate more misses. To address this, they note that in
general, with LRU replacement policy, most of the cache
hits are distributed to only a few MRU (most recently
used) blocks. Thus, to avoid generating writeback traffic,
while also keeping low miss-rate, those clean blocks in the
LRU stack can be replaced which have less hits relative
to the dirty LRU ones. The techniques of both [47] and
[48] work by changing the cache replacement policy to
minimize writebacks, but the difference between them is
that the former does not record the hit-information and
works only based on LRU-ordering, while the technique
of [48] aims to control miss-rate also by recording the
number of hits to different ways.

Bock et al. [85] propose a technique to save PCM
energy and increase its endurance by avoiding useless
write-backs. They define a write-back to a lower level
cache to be useless when the data that are written back
are not used again by the program. As an example, a
useless write-back results when a dirty cache line (block)
that belongs to a dead memory region is evicted from
the cache. Their technique assumes that suitable schemes
can be employed to detect dead memory regions in
different parts of memory, such as heap, stack and global
memory. Assuming that such information is available,
their technique estimates the maximum energy savings
that could be achieved by avoiding useless write-backs.
Further, since writes are not on critical path of execution,
avoiding useless write-backs does not have a significant
influence on performance.

Wang et al. [9] propose a technique to reduce the
number of writebacks from LLC to PCM main memory
for reducing the power consumption of PCM memory.
The technique predicts blocks that are frequently written
back in the LLC and then, aims to keep highly reused
dirty cache blocks in the LLC. It classifies the LLC blocks
into frequent writeback blocks (which are written back
to main memory with high frequency within a certain
access interval) and infrequent writeback blocks (which
are not written into main memory frequently and can be
clean or dirty). It dynamically partitions the LLC sets
into a frequent writeback list and a infrequent writeback
list and keeps a best size of each list in the LLC. Since the
frequent-writeback data are stored in the LLC, it reduces



write-induced interference as well as energy consumption
of PCM. The difference between the technique of [85]
and that of [9] is that the former requires control flow
analysis performed by compiler or annotations/hints by
the programmer to detect dead memory regions, while
the latter (the one by [9]) does not require this and
works simply by using the information available during
application execution.

Yoon et al. [86] use a design space exploration
approach for finding the optimal configuration of cache
hierarchy in a system with non-volatile memory. Use
of non-volatile devices enables designing caches with
higher capacity and hence, the cache hierarchy in modern
systems is becoming deeper with L4 and L5 caches (e.g.
off-chip DRAM caches). They consider both performance
and power while performing the experiments. They
consider cache hierarchy of different depth, where the
cache at any level can be designed with either SRAM,
DRAM or PCM. Also the main memory could be
designed with DRAM or PCM. They observe that a large
last level cache (LLC) designed with PCM can improve
energy efficiency by reducing the costly off-chip accesses.
Also, deep cache hierarchies are less energy efficient than
flat hierarchies (2 or 3 levels).

4.7 Techniques for Managing MLC PCM Memory

Although PCM MLC devices offer more density than
SLC (single level cell) devices, they also present
significant challenges. Several techniques have been
proposed to address these challenges and we now discuss
a few of these techniques.

For MLC devices to work properly, precise reading
of resistance values is required. As the number of levels
increase, the resistance region assigned to each data
value decreases significantly. Thus, the read latency of
MLC devices may increase linearly or exponentially
with the number of bits. Qureshi et al. [87] present a
memory architecture which aims to achieve the latency,
lifetime and energy of SLC devices in the common case,
while still achieving the high memory capacity of MLC
device. Their technique divides the main memory in two
regions, one with high-density, high-latency which uses
MLC mode, and another with low-latency, low-density
that uses half the number of bits per cell than high-
density region. By tracking the memory requirements
of the workloads, their technique adapts the fraction of
both regions. When the workload requires high memory
capacity, the system uses capacity benefits of MLC
device. When the workload requirements can be satisfied
with SLC (or fewer bits per level cell), the system
increases the size of SLC region to avoid increased energy
and latency. This is achieved by restricting the number
of levels used in a MLC device to emulate a fewer bits per
cell device. To avoid high latency for frequently accessed
pages, the system transfers a page from high-density
region to low-density (faster) region when the page is
accessed. Thus, by achieving high capacity and low

latency, their technique improves the energy efficiency of
PCM memory systems.

Wang et al. [36] propose a technique for mitigating
the energy overhead of MLC PCM devices. Their
technique works on the observation that there
are significant value-dependent energy variations in
programming MLC PCM. Thus, by using data encoding,
the write energy can be reduced. In a 2-bit PCM, there
are four states, viz. 00, 01, 10 and 11. They show that
programming states 00 and 11 require significantly less
energy than programming the other states. Thus, data
encoding is used to increase the 00 and 11 states in
writing the data. They also use data comparison write
(DCW) approach to enhance the effectiveness of the data
encoding scheme.

Joshi et al. [39] present a circuit and
microarchitecture-level technique to address the high
write latency of MLC-PCM. The write latency and
energy of PCM vary significantly with target resistance
level and the initial state of PCM cell. Their technique
adapts the programming scheme of MLC PCM by
taking into consideration the initial state of the cell, the
target resistance to be programmed and the effect of
process variation on the programming current profile of
the MLC. For states mapped at lower resistance values,
they use single reset pulse programming and for states
mapped at higher resistance values, they use staircase
programming. Also, data comparison writes (DCW) is
used to enhance the effect of their technique. Also, when
the cell is already present in the stable completely set
state, their technique skips initialization sequence for
programming, which further improves the write latency
and energy efficiency.

5 Conclusion

Driven by the quest for exascale performance, modern
processors, data-centers and supercomputers use large
sized memory. To alleviate the limitations posed
by conventional technologies, designers have recently
explored new technologies for designing cache and
memory hierarchy. The use of phase change memory
(PCM) as a universal choice for main memory presents
both challenges and opportunities. It is clear that while
PCM provides a promising alternative to conventional
DRAM, it also has several limitations such as large power
consumption. We believe that in the near future, the
challenges of PCM power consumption would need to be
simultaneously addressed at different levels, as follows.

Device level: At device level, innovations in
physical properties of PCM should improve its write
endurance and reduce its write latency and energy. This
may even enable integration of PCM at the level of
cache, DRAM and hard-disk. Also, scaling of PCM to
smaller feature sizes will help in greatly increasing the
integration density.

Architecture level: At architectural level,
techniques such as 3D-stacking, use of photonics



for designing energy proportional interfaces for PCM
memory etc. are expected to dramatically reduce data-
transfer latency and improve capacity and bandwidth of
PCM memory systems.

System level: At system level, insights from
algorithm and application-level analysis will aid in
designing more effective management policies. For
example, by utilizing the specific properties of
application domains or data-structures, write coalescing
techniques can be applied more effectively.

Taken together, in very near-future, these advances
may enable use of PCM as a stand-alone memory
technology which can be used as a complete replacement
for conventional memory technologies.

In this paper, we have presented a review of
techniques proposed for power management of phase
change memory. We believe that our work will be useful
for both beginners and experts in the field of PCM. Also,
it will help them in gaining insights into the working
of architectural techniques of PCM power management
and encourage them to improve these techniques even
further.
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