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Abstract—Directive-based, accelerator programming models
such as OpenACC have arisen as an alternative solution to
program emerging Scalable Heterogeneous Computing (SHC)
platforms. However, the increased complexity in the SHC systems
incurs several challenges in terms of portability and productivity.
This paper presents an open-sourced OpenACC compiler, called
OpenARC, which serves as an extensible research framework
to address those issues in the directive-based accelerator pro-
gramming. This paper explains important design strategies and
key compiler transformation techniques needed to implement
the reference OpenACC compiler. Moreover, this paper demon-
strates the efficacy of OpenARC as a research framework for
directive-based programming study, by proposing and imple-
menting OpenACC extensions in the OpenARC framework to
1) support hybrid programming of the unified memory and
separate memory and 2) exploit architecture-specific features
in an abstract manner. Porting thirteen standard OpenACC
programs and three extended OpenACC programs to CUDA
GPUs shows that OpenARC performs similarly to a commercial
OpenACC compiler, while it serves as a high-level research
framework.

Keywords—Compilers,Programming Techniques,Programming
Environments,Code generation

I. INTRODUCTION

Scalable Heterogeneous Computing (SHC) platforms en-
abled by heterogeneous devices, such as general purpose
graphics processors (NVIDIA CUDA and AMD GCN), Intel
Xeon Phi, etc., are emerging as an alternative solution to
respond with the hardware constraints in the today’s archi-
tectures [22], [6], [3]. However, the heterogeneity in SHC
puts a significant burden on its programming: to make use
of these platforms, scientists must deal with multiple, dif-
ferent programming models (e.g., MPI, OpenMP, CUDA,
and OpenCL) simultaneously and apply different optimization
strategies, depending on the target architectures and used
programming models, incurring portability and productivity
issues. Directive-based accelerator programming models [4],
[5], [7], [11], [16], [14], [15] are one such attempt to address
these challenges. Among them, OpenACC [14] is the first
standardization effort to provide programming/performance
portability across different device types and compiler vendors.
A major benefit of OpenACC (and other directive-based ac-
celerator programming models) is that it provides very high-
level abstractions over the complexity of the underlying hetero-
geneous architectures and low-level programming languages
such as CUDA and OpenCL. However, these abstractions

should be balanced out to compromise between two opposite
goals: programmability and performance. In previous work, we
investigated existing directive-based programming models and
their implementations in order to better understand this balance
on these emerging programming models [10]; we identified
several important issues:

Functionality. 1) Most of them either do not provide
reduction clauses or support only scalar reductions. 2) Syn-
chronization is supported in limited ways. 3) All work on
array-based computations, but pointer operations are supported
limitedly. 4) Each model has different restrictions on the types
of mappable regions. These different limits on the functionality
of each model incur inconsistent performance and portability
problems.

Tunability. Most of the existing models do not pro-
vide enough control over various architecture-specific fea-
tures (e.g., specialized memory) and their respective compiler-
optimizations as evidenced by their measured performance.
This lack of control limits the programming model tunability.

Debuggability. Directive models provide high-level ab-
straction, but the opaque nature of these models put a signif-
icant burden on the user for debugging. They do not provide
insight to the users on the multiple levels of translation, or
properly attribute performance data to application constructs.

To investigate these issues in the directive-based accelerator
programming, we have developed a new research compiler
framework, called OpenARC [9], which supports full features
of OpenACC standard V1.0 (and subset of V2.0) and offers
built-in performance and debugging tools, in addition to vari-
ous compile-time analysis and transformation tools. Here are
the main contributions of this paper:

• This paper provides an overview of the important de-
sign strategies and several key transformation techniques
needed to realize a reference OpenACC compiler in the
OpenARC framework, which includes global variable
propagation and OpenACC worker-single mode transfor-
mation techniques, while detailed description of the base
implementation of OpenARC is explained in a reference
OpenARC paper [9].

• We demonstrate the effectiveness of OpenARC as a
general research framework with illustration. Examples
include 1) the study on the impact of array reduction
on GPU computing, 2) OpenACC extension to support
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hybrid programming of both the unified memory and the
separate memory, 3) device-aware OpenACC extensions
to support architecture-specific features, and 4) directive-
based, interactive program debugging and optimization
study (More details on this debugging study can be found
in [8].).

• We evaluate OpenARC by porting thirteen standard
OpenACC programs and three extended OpenACC pro-
grams to NVIDIA GPUs and comparing the performance
against a commercial OpenACC compiler and hand-
written CUDA programs. The results show that OpenARC
performs similarly to the commercial compiler, while it
serves as a high-level research framework.

The rest of this paper is organized as follows: Sect. II
gives an overview of the OpenACC programming model,
Sect. III explains the overall design goals and key transforma-
tion techniques needed to implement the OpenACC compiler
(OpenARC). Applications of the OpenARC framework, eval-
uation, and conclusions are presented in Sect. IV, Sect. V, and
Sect. VI, respectively.

II. BACKGROUND: OPENACC ACCELERATOR

PROGRAMMING INTERFACE

OpenACC [14] is a directive-based, accelerator program-
ming interface, which is initiated by a consortium of CAPS,
CRAY, PGI, and NVIDIA as the first standardization effort
to provide portability across device types and compiler ven-
dors. The OpenACC Application Programming Interface (API)
consists of the compiler directives, library routines, and envi-
ronment variables. The OpenACC API allows programmers to
provide high-level information, known as ”directives”, to the
compiler, identifying which regions of a host program to be
offloaded to an accelerator device (compute regions), and how
offloaded regions will be executed (execution modes), without
requiring programmers to modify or adapt the underlying code
itself. Then, the underlying OpenACC compiler will handle all
the complex details, such as accelerator code generation, data
transfers between a host and a device, accelerator initialization,
etc., by generating an actual host + device program for the
target accelerator.

OpenACC has two major types of directives: directives
for managing parallelism and those for managing data. The
directives for parallelism guide types of parallelism to execute
loops, and those for data deal with data mapping and transfers
between the host and the accelerator. OpenACC provides two
types of compute regions: kernels region, which typically
contains one or more work-sharing loops and may be divided
into a sequence of device kernels by the compiler, and par-
allel region, which may also contain multiple work-sharing
loops but will be executed as a single device kernel on the
accelerator. OpenACC supports three levels of parallelism: 1)
gang parallelism is coarse-grain; a number of gangs will be
launched on the device to execute a device kernel. 2) Worker
parallelism is fine-grain; each gang will have one or more
workers. 3) Vector parallelism represents Single Instruction,
Multiple Data (SIMD) or vector operations within a worker.
These three work-sharing clauses guide how to execute loops
in a compute region on the target device, but actual parallelism
mapping onto a device may depend on the device capability
and the compiler implementation. For example, the CUDA

programming model supports two levels of parallelism; thread
block-level parallelism, which is coarse-grain, and thread-level
parallelism, which is fine-grain, and CUDA-supporting GPUs
implement thread-level parallelism using an SIMD architec-
ture. Therefore, OpenACC compilers may choose different
strategies to map three-level OpenACC parallelism onto CUDA
GPUs.

When executing a compute region on the device, one or
more gangs are launched, each of which may contain one
or more workers. Each worker has the capability to execute
at least one vector lane. The compute region starts in gang-
redundant mode, where one vector lane of one worker in each
gang executes the same code redundantly. When the program
encounters a gang loop, the execution mode is changed to
gang-partitioned mode, where the iterations of the gang loop
are partitioned across gangs, but still with only one vector
lane of one worker in each gang active. If a gang reaches
a worker loop, the gang switches from worker-single mode,
where only one worker is active, to worker-partitioned mode,
where all workers in a gang are active, and the iterations
of the worker loop are partitioned across workers of this
gang, but still with one active vector lane per worker (vector-
single mode). If a worker encounters a vector loop, the worker
transitions to vector-partitioned mode, where all vector lanes
in the worker execute assigned iterations of the vector loop
using SIMD or vector operations. If a single loop is annotated
with multiple work-sharing clauses, the iterations of the loop
will be distributed across gangs, workers, and vector lanes as
appropriate.

III. OPENARC: OPEN ACCELERATOR RESEARCH

COMPILER

OpenARC [9] is the first open-source compiler supporting
full features of OpenACC V1.0, which takes C-based, input
OpenACC programs and generates architecture-specific output
codes. This paper primarily focuses on targeting CUDA GPUs,
but OpenARC has recently been extended to support both
CUDA and OpenCL back ends. More details on porting to
OpenCL devices (e.g., Intel MIC and AMD GCN architec-
tures) using OpenARC are shown in a companion paper [19].
There exist open-source implementations of OpenACC; ac-
cULL [18] provides a source-to-source translation framework
combined with a general runtime system that can work with
OpenACC, but it is developed as a fast-prototyping tool with
limited contexts, while OpenARC supports full research con-
texts with a fine-grained control over the overall translations.
OpenUH [21] also provides a source-to-source translation of
OpenACC; as a branch of the open source Open64 compiler
suite, OpenUH provides a rich set of compiler components,
such as multiple frontends supporting various input languages,
a multi-level IR, and multi-level optimization passes. However,
the complex multi-level IR intertwined with the multi-level op-
timizations makes it difficult to perform various high-level op-
timizations for directive-based accelerator programming study.
Another open-source accelerator compiler, HOMP [12], is
based on the ROSE compiler infrastructure [17], but it targets
the OpenMP accelerator model, rather than OpenACC. The
differences between HOMP and OpenARC in terms of the
target models and design strategies will make them comple-
ment each other by providing diverse research environment for
accelerator programming.

2



This section presents the overall design of OpenARC and
important compile-time transformations required for efficient,
automatic porting of OpenACC programs into a target accel-
erator. Detailed description of the base OpenARC implemen-
tation can be found in the reference OpenARC paper [9].

A. Design Goals

To serve as a general research compiler framework, Ope-
nARC has been designed with the following emphases: exten-
sibility, debuggability, and tunability.

1) Extensibility: OpenARC is designed with extensibility
in mind. OpenARC, which is extended from the Cetus com-
piler infrastructure [2], is equipped with various advanced
analysis and transformation techniques. They can be used as
base building blocks to easily create more advanced compiler
passes. OpenARC’s very high-level IR class hierarchy can
convey common program semantics in traditional general-
purpose languages in a language independent way. To capture
new language features not available in traditional languages,
OpenARC’s IR class hierarchy can be easily extended. As an
alternative, OpenARC’s rich, extensible annotations can cap-
ture various semantic information [9]. This extensible design
allows OpenARC to provide a powerful research framework
for various programming studies.

2) Debuggability: OpenARC generates output GPU code
by unparsing very high-level IR, resulting in output code
similar to the input code, which allows more readability than
existing OpenACC compilers. Moreover, there is a clear sepa-
ration between analysis passes and transformation passes, and
all compiler passes communicate with each other through an-
notations, which allows OpenARC to build various traceability
and instrumentation mechanisms into the process. This method
establishes links between input directive models and output
codes/performance so that users can attribute performance
measurements appropriately.

3) Tunability: As a directive compiler for OpenACC, Ope-
nARC has rich directives/environment variables for internal
tracing and GPU-specific optimizations. Combined with its
built-in tuning tools, OpenARC allows users to control over-
all OpenACC-to-GPU translation and optimization in a fine-
grained, but still abstract manner, offering very high tunability.

B. Compiler Transformations

OpenARC exploits various advanced analysis and transfor-
mation techniques to efficiently port OpenACC applications to
a target accelerator. This section describes several key transfor-
mation techniques used to address various issues arising during
the OpenACC-to-CUDA translation.

1) Global Variable Propagation: If an OpenACC program
is ported to a device that has a separate address space from
a host, which is true in most GPUs, all data accessed in a
compute region should be allocated on the device memory, all
references to the host data in the region should be replaced
with those to the corresponding data on the device memory.
This mapping requires that all references to the global data in a
device function called in a compute region should be explicitly
passed to the function as arguments, unless all parent device
functions calling the device function and the device function

Algorithm 1 Global Variable Propagation Transformation

Input: input OpenACC C program
Output: OpenACC C program where global variables are

passed as function parameters for device functions in
compute regions

1: Create an empty F2GPmap, which will contain mapping
of [function, [global symbol, function parameter]]

2: for each device function called in compute regions do
3: DEVPROCCLONE(device function, null)

4: function DEVPROCCLONE(dFunc, callerFunc)
5: G2Pmap = F2GPmap.get(dFunc) � create [dFunc,

G2Pmap] mapping and add it to F2GPmap, if not existing
6: CallerG2Pmap = F2GPmap.get(callerFunc) � null if

not existing
7: cFunc = a cloned function of dFunc (create new one

if not existing)
8: cFCall = a new function call for cFunc; replace dFunc

call site with this
9: for each global symbol (gsym) interprocedurally ac-

cessed in dFunc do
10: if CallerG2Pmap exists then arg =

CallerG2Pmap.get(gsym) else arg = gsym
11: if cFunc is newly created then
12: param = a new function parameter for gsym,

added to cFunc
13: G2Pmap.put(gsym,param)

Add arg to cFCall

14: for each function (nDFunc) called in dFunc do
15: DEVPROCCLONE(nDFunc, dFunc)

16: end function

itself are fully inlined in the compute region. However, full in-
lining may decrease the code readability significantly, worsen-
ing debugging problems, and may lose array shape information
with additional aliasing, preventing some advanced compiler
optimizations. (Parameter passing also incurs pointer aliasing,
but they occur only at function boundaries and preserve origi-
nal shape information, much less complex than those incurred
by full inlining.) For these reasons, OpenARC performs a
global variable propagation transformation (algorithm 1) for
the global data accessed by device functions, instead of doing
full inlining. The transformation also has a side benefit making
it easier for a backend compiler (e.g., CUDA NVCC) to
perform inlining, if necessary. The algorithm transforms device
functions accessing global variables in depth-first-traversal of a
function-call graph, so that global variables accessed in a callee
function are passed as function arguments under the caller-
function’s context. Even though not shown in algorithm 1,
it also performs several optimizations, such as passing scalar
variables by value if they are read-only.

2) OpenACC Worker-Single Mode Transformation: As ex-
plained in Sect. II, the execution mode of a compute region can
change according to work-sharing rules. Therefore, enforcing
exact execution mode to each program statement is necessary
for correct program execution. In porting OpenACC to CUDA,
OpenARC maps gangs to CUDA thread blocks and workers
to CUDA threads, ignoring vector parallelism. In this mapping
strategy, codes in worker-single mode should be executed
only by one worker in a gang, meaning only one thread in
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Algorithm 2 OpenACC Worker-Single Mode Transformation

Input: input OpenACC C program
Output: OpenACC C program where worker-single mode is

enforced
1: for each compute region without worker clause do
2: HANDLEWSMODE(region body, true)

3: function HANDLEWSMODE(region, TopRegion)
4: WSMode = true; Groups = an empty list; tGrp = an

empty group
5: for each statement in region do
6: Split = false
7: if declaration or control-flow statement then Split

= true
8: else if barrier annotation or loop with worker clause

then
9: WSMode = false; Split = true

10: else if has child regions or function calls then
11: if HANDLEWSMODE(child region/function,

false) is false then
12: WSMode = false; Split = true

13: if Split is true then � split a group.
14: if tGrp is not empty then Groups.add(tGrp);

tGrp = a new group

15: else tGrp.add(current statement)

16: if tGrp is not empty then Groups.add(tGrp)
17: if WSMode is false or TopRegion is true then
18: wrap each group in Groups with if-conditions

19: � If WSMode is true but TopRegion is false,
if-condition will be added to the caller statement.

20: return WSMode
21: end function

a thread block. However, CUDA GPUs executes threads in
a thread block in an SIMD fashion, meaning all threads in
the same thread block executes the same code. To enforce
correct semantic of the worker-single mode under the CUDA
execution model, each statement in the worker-single mode
should be conditionally executed so that only one thread can
work on. However, checking conditions for each statement may
incur non-trivial overhead. To reduce this overhead, we have
developed a transformation technique (algorithm 2), which
groups adjacent statements in the worker-single mode together
as much as possible, even across the procedure boundary,
so that statements in the same group can be guarded by a
common condition. In this grouping, a group should be split
into two sub-groups at every declaration statement or control-
flow statement (e.g., break, continue, etc.), since these should
be executed by all threads (line 7 in algorithm 2). The group
should also split at each internal barrier annotation implied by
the OpenACC semantics (line 8 in algorithm 2).

IV. OPENARC APPLICATIONS

A. OpenACC Extension to Support Unified Memory

One of the major challenges for the OpenACC program-
ming is to deal with CPU-GPU data movement; most of ex-
isting accelerator-based heterogeneous systems have separate
address spaces for CPU and GPU, and the cost to communicate
data between CPU and GPU is relatively high. For this, Ope-

nACC provides a rich set of data clauses and runtime library
routines, but OpenACC still relies on programmers to orches-
trate memory management. If programmers do not explicitly
guide the data transfers using data clauses, OpenACC offers a
default management scheme, which copies all data accessed in
a compute region from CPU to GPU before the corresponding
GPU kernel is launched and copies back from GPU to CPU
after the kernel finishes. The default scheme makes OpenACC
programming much easier; Listing 1 shows such an example
OpenACC code, where a programmer specifies only compute
regions to be offloaded (line 5 and 11 in Listing 1). Then,
the underlying OpenACC compiler will generate codes that
copy data at each kernel boundary. However, the naive default
scheme may suffer from excessive redundant data transfers, as
we shall see later in Sect. V-D. Listing 2 shows the case where
the programmer manually optimizes data transfers using data
directives (line 4 in Listing 2), which dictate that only data b
should be copied from CPU to GPU at the beginning of the
attached data region (line 4) and copied back from GPU to
CPU at the end of the attached data region (line 10), reducing
the number of memory transfers significantly. However, the
manual memory management can be complex and error-prone
if a program contains many kernels called across different
function boundaries, and/or there are complex user data that
requires deep copy of nested data structures.

Unified memory, recently introduced by NVIDIA CUDA
6 and AMD Accelerated Processing Units (APUs), allows that
both CPU and GPU access data using a single pointer, and data
transfers between CPU and GPU are automatically handled
by the underlying system, which dramatically simplifies mem-
ory management in GPU programming. OpenACC supports
systems with GPUs that have distinct memory from the host
CPU, as well as systems with GPUs that share memory with
the CPU. In the latter case, an OpenACC implementation
may avoid the memory allocation and data movement and
simply share the data in the shared memory. This approach
will work well if the whole memory is shared by default.
However, most of existing GPUs support unified memory by
creating a pool of managed memory that is shared between
CPU and GPU, which is mainly to minimize the performance
tradeoffs; for example, physically fusing two distinct memories
(e.g., AMD APUs) needs to be balanced between bandwidth-
oriented GPU architectures and latency-oriented CPU archi-
tectures, and software-managed unified memory (e.g., NVIDIA
CUDA 6) may suffer from large runtime overheads. Therefore,
most of existing unified-memory systems require that data
should be allocated in a special way to be shared between
CPU and GPU, and it is recommended to use the unified
memory selectively depending their access patterns. To tightly
incorporate these issues into the OpenACC model, we experi-
mentally extended the OpenACC standard using the OpenARC
framework. Table I describe the changes in the OpenACC
runtime routines. The newly added library routines are used to
manage unified memory, and they fall back to CPU memory
calls if they are called on a GPU without unified-memory
support. All the existing library routines and internal runtime
routines used to implement OpenACC data clauses will simply
check whether the input data is on the unified memory,
skipping any management on the unified memory. Having a
separate set of library routines dedicated to manage the unified
memory, which can fall back to traditional CPU-memory-
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management calls on separate-memory GPUs, allows to create
hybrid OpenACC programs that selectively combine separate
memory and unified memory, in addition to programs that
are fully compatible with both unified memory and separate
memory. Listing 3 shows a unified-memory version of the code
in Listing 1, where CPU malloc/free calls are replaced with
the proposed acc create unified/acc delete unified calls (line
1-4 and 14-15), and a data directive with a present data clause
is added (line 6). (A similar type of code can be created using
any standard OpenACC implementation if it supports unified
memory.) Even though this version can be created easily by
adding a few lines of codes, without analyzing detailed data
access patterns to find when to move data between CPU and
GPU as in Listing 2, it will work only on unified-memory
systems. Listing 4, on the other hand, will work on both
unified-memory systems and separate-memory systems; on
separate-memory systems, unified-memory-management calls
(acc create unified in line 4 and acc delete unified in line 14-
15) will be reverted back to CPU malloc/free calls, resulting in
the same behavior as codes in Listing 2. On unified-memory
systems, internal runtime routines generated to handle the copy
data clause will only check the data presence on the unified
memory since the argument b is allocated on the unified
memory (line 4), while the runtime routines for create data
clause will work as expected. This selective application of the
unified memory will endow programmers opportunities to do
the precise data orchestration and coordination between CPU
and GPU still at high level, resulting in efficient performance
as evidenced in Sect. V-D.

Listing 1: Unoptimized Separate-Memory Example

1 float (*a)[N2]=(float(*)[N2])malloc(..);
2 float (*b)[N2]=(float(*)[N2])malloc(..);
3 ...
4 for (k = 0; k < ITER; k++) {
5 #pragma acc kernels loop independent
6 for (i = 1; i <= N; i++) {
7 for (j = 1; j <= N; j++) {
8 a[i][j]=(b[i-1][j]+b[i+1][j]+
9 b[i][j-1]+b[i][j+1])/4.0f;

10 } }//kernel-loop1
11 #pragma acc kernels loop independent
12 for (i = 1; i <= N; i++)
13 for (j = 1; j <= N; j++)
14 b[i][j] = a[i][j];//kernel-loop2
15 } //end of k-loop
16 ... //b is accessed by CPU
17 free(a); free(b);

Listing 2: Optimized Separate-Memory Example

1 float (*a)[N2]=(float(*)[N2])malloc(..);
2 float (*b)[N2]=(float(*)[N2])malloc(..);
3 ...
4 #pragma acc data copy(b), create(a)
5 for (k = 0; k < ITER; k++) {
6 #pragma acc kernels loop independent
7 ...//kernel-loop1
8 #pragma acc kernels loop independent
9 ...//kernel-loop2

10 } //end of k-loop
11 ... //b is accessed by CPU

12 free(a); free(b);

TABLE I: Augmented OpenACC Runtime Routines to support
Unified-Memory

Runtime Routine Description
acc create unified
(pointer, size)

Allocate unified memory if supported; otherwise, al-
locate CPU memory using malloc if input pointer is
NULL.

acc pcreate unified
(pointer, size)

Same as acc create unified if input data not present on
the unified memory; otherwise, do nothing.

acc copyin unified
(pointer, size)

Allocate unified memory and copy data from the input
pointer if supported; otherwise, allocate CPU memory
using malloc and copy data from the input pointer.

acc pcopyin unified
(pointer, size)

Same as acc copyin unified if input data not present on
the unified memory; otherwise, do nothing.

acc delete unified
(pointer, size)

Deallocate memory, which can be either unified memory
or CPU memory.

Existing runtime
library routines
and internal
routines used for
data clauses

Check whether the input data is on the unified memory;
if not on the unified memory, perform the intended
operations.

Listing 3: Unified-Memory Example

1 float (*a)[N2]=
2 (float(*)[N2])acc_create_unified(..);
3 float (*b)[N2]=
4 (float(*)[N2])acc_create_unified(..);
5 ...
6 #pragma acc data present(a, b)
7 for (k = 0; k < ITER; k++) {
8 #pragma acc kernels loop independent
9 ...//kernel-loop1

10 #pragma acc kernels loop independent
11 ...//kernel-loop2
12 } //end of k-loop
13 ... //b is accessed by CPU
14 acc_delete_unified(a,...);
15 acc_delete_unified(b,...);

Listing 4: Hybrid Example that selectively combines both
Separate and Unified Memories

1 float (*a)[N2]=
2 (float(*)[N2])malloc(..);
3 float (*b)[N2]=
4 (float(*)[N2])acc_create_unified(..);
5 ...
6 #pragma acc data copy(b), create(a)
7 for (k = 0; k < ITER; k++) {
8 #pragma acc kernels loop independent
9 ...//kernel-loop1

10 #pragma acc kernels loop independent
11 ...//kernel-loop2
12 } //end of k-loop
13 ... //b is accessed by CPU
14 acc_delete_unified(a,...);
15 acc_delete_unified(b,...);
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B. OpenACC Extension to Support Accelerator-Specific Fea-
tures

OpenACC provides a rich set of directives to guide parallel
loop mapping and data sharing. However, it does not provide
ones for compiler-specific or architecture-specific information,
making it hard to achieve optimal performance. For this,
we experimentally extended the OpenACC standard, called
OpenACC-e, which enables advanced interactions either be-
tween compiler passes or between programmers and compilers.
The proposed extensions primarily focus on CUDA GPUs,
but most of the proposed extensions are also applicable to
other types of accelerators. Device-aware OpenACC extension
(OpenACC-e) can be grouped with the following categories:

TABLE II: OpenACC Directive Extension for CUDA-Specific
Memories

#pragma openarc cuda [list of clauses]
where clause is one of the followings:
global constant, noconstant, texture,

notexture, sharedRO, sharedRW, noshared,
registerRO, registerRW, noregister

1) Device-specific memory architecture: OpenACC mem-
ory model distinguishes the device memory from the host
memory, but it is oblivious of the device sub-memory ar-
chitectures for portability. In low-level device programming
models such as CUDA and OpenCL, programmers can manage
device-specific memories/caches, but OpenACC only allows
programmers to give hints to the compiler in the form of
directives; actual cache/memory managements are up to the
compiler. However, this inability for users to manage device-
specific memories often incurs a noticeable performance gap
between OpenACC and low-level programming models. To
address this issue, we extend OpenACC with device-specific
directives; Table II shows extensions for CUDA GPUs. (We
use a different pragma name (openarc) to distinguish these
from standard OpenACC directives.) These additional clauses
are used to control how the underlying compiler to put spec-
ified data in the GPU memory; e.g., global clause enforces
the compiler to allocate specified data on the CUDA global
memory, which may be necessary due to the capacity limit
of other special memories, and sharedRO directs the compiler
to allocate target data on the CUDA shared memory. (The
compiler may be able to perform additional optimizations since
the data are read-only.) We also have clauses to prevent the
compiler from using some memories for the target data (e.g.,
noconstant, notexture, and noregister). These special clauses
are mainly used by internal compiler passes to communicate
analysis results, but programmers can also use these to fix
wrong or inefficient optimization decisions by the compiler.

These directive extensions can still keep enough abstraction
over the underlying architectures and also preserve the porta-
bility, since ignoring these does not break the original program
semantics. However, to fully exploit device-specific memories
using directive models like OpenACC, the directive model may
also have to provide a more fine-grained control over accessing
these memories, described in the following section.

2) Multi-dimensional work-sharing loop mapping: Accel-
erator devices may support multiple levels of parallelism, and

each device may have different types of memories that prefer
different access patterns for optimal performance. Moreover,
there can be complex interactions among limited hardware
resources. Therefore, mapping of work-sharing loop iterations
onto device execution units dictates overall resource utilization.
For this, OpenACC supports three levels of parallelism (gang,
worker, and vector loops), but actual mapping of these work-
sharing loops onto the device is up to the compiler. Moreover,
the latest OpenACC standard (V2.0) does not allow nested
work-sharing loops of the same type (e.g., nested gang loops)
except for nested compute regions, which puts significant lim-
its on controlling multi-dimensional work-sharing loop map-
ping. For example, the CUDA model allows multi-dimensional
grid and thread blocks, but with OpenACC, programmer can
not explicitly express multi-dimensional grid of gangs or multi-
dimensional workers in a gang with specific dimension sizes.
(The tile clause in OpenACC V2.0 allows multi-dimensional
mappings, but the iteration-to-thread mapping is still implicit.)
To address this limit, OpenARC extends OpenACC to allow
nested work-sharing loops of the same type, if they are tightly
nested, and OpenARC applies static mapping for the tightly-
nested work-sharing loops. (e.g., the innermost gang loop is
statically mapped to the innermost thread block of the CUDA
grid.) This static mapping allows programmers to control
iteration-to-thread mapping, enabling to manipulate complex
thread-access patterns. Combined with additional directives
for device-specific memories, this offers an alternative method
for programmers to utilize special device memories in a fine-
grained manner at OpenACC level (e.g., complex software
caching using the CUDA shared memory).

This extension can be easily reverted back to the OpenACC
standard by adding OpenACC collapse clauses to the nested
work-sharing loops. If user annotates a loop with independent
clauses instead of work-sharing clauses (gang/worker /vector),
it will let the compiler automatically decide appropriate map-
pings.

Listing 5: Matrix Multiplication Code in OpenACC-e

1 #pragma acc kernels loop gang(N/BSIZE) \
2 copy(C[0:N*N])copyin(A[0:N*N],B[0:N*N])
3 #pragma openarc cuda sharedRW(As, Bs)
4 for(by = 0; by < (N/BSIZE); by++) {
5 //by is mapped to blockIdx.y
6 #pragma acc loop gang(N/BSIZE)
7 for(bx = 0; bx < (N/BSIZE); bx++) {
8 //bx is mapped to blockIdx.x
9 float As[BSIZE][BSIZE];

10 float Bs[BSIZE][BSIZE];
11 #pragma acc loop worker(BSIZE)
12 for(ty = 0; ty<BSIZE; ty++) {
13 //ty is mapped to threadIdx.y
14 #pragma acc loop worker(BSIZE)
15 for(tx = 0; tx<BSIZE; tx++) {
16 //tx is mapped to threadIdx.x
17 int aBegin = wA*BSIZE*by;
18 int aEnd = aBegin+wA-1;
19 int aStep = BSIZE;
20 int bBegin = BSIZE*bx;
21 int bStep = BSIZE*wB;
22 float Csub = 0;
23 for (int a=aBegin, b=bBegin; \
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24 a<=aEnd; a+=aStep, b+=bStep) {
25 As[ty][tx] = A[a+wA*ty+tx];
26 Bs[ty][tx] = B[b+wB*ty+tx];
27 #pragma acc barrier
28 for (int k=0; k<BSIZE; ++k)
29 Csub+=As[ty][k]*Bs[k][tx];
30 #pragma acc barrier
31 }; int c = wB*BSIZE*by+BSIZE*bx;
32 C[c + wB * ty + tx] = Csub;
33 } }
34 } }

3) Fine-grained synchronization: To handle concurrency
and synchronization issues more efficiently, OpenARC extends
OpenACC further with a barrier directive (#pragma acc bar-
rier) to enable localized and hierarchical implementation that
may utilize underlying hardware supports to reduce the overall
overhead incurred during these operations. The new barrier
directive is allowed only in worker/vector loops and has a local
scope (a barrier in a worker loop enforces synchronization
only among workers in the same gang, and a barrier in a
vector loop enforces synchronization only among vector lanes
in the same worker). Having this local barriers will enable
to port a braided code structure, where the outermost parallel
loop consists of a set of inner parallel loops and sequential
operations, into a single device kernel, which can save the
overhead of additional kernel launches that would incur oth-
erwise [20]. Because the OpenACC execution model assumes
implicit barriers at the end of worker/vector loops, most of
the OpenACC-supporting devices may be able to support this
local synchronization. If not, the local synchronization can be
achieved via a global synchronization at the end of a kernel,
which means that the kernel should be split into two sub-
kernels at each barrier; the resulting codes will be compatible
with the OpenACC standard. For this, OpenARC supports
automatic kernel-splitting transformation. (The kernel-splitting
may not always work if the splitting incurs upward-exposed
private variables; in this case, OpenARC exits with an error
message requesting programmers to manually change the code
not to use the local barriers.)

4) OpenACC-e Example: Listing 5 presents an example
matrix multiplication code written with OpenACC-e, which
has the same computation patterns as those in the example
CUDA code of Matrix Multiplication with Shared Memory in
the CUDA C programming guide [13]. The static mapping of
the nested gang/worker loops, where the numbers of gangs/-
workers are set to the corresponding loop iteration sizes (line
1, 6, 11, and 14), will ensure that the loop index variables
(bx, by, tx, and ty) can be used to refer to thread blocks (e.g.,
use bx as if blockIdx.x in CUDA)) and threads in a thread
block (e.g., use tx as if threadIdx.x in CUDA)) when ported to
CUDA GPUs. The sharedRW clause (line 3) is used to allocate
gang-private variables (As and Bs on line 9 and 10) on CUDA
shared memory . Combined with the new barrier directives
(line 27 and 30), these OpenACC-e features allow users a
fine-grained control over thread mapping and software caching
with special memories, giving performance comparable to the
manual CUDA versions, as shown in Sect. V.
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Fig. 1: Interactive GPU Program Debugging and Optimization
Framework

C. Interactive Program Debugging and Optimization using
OpenARC

To improve debuggability of the directive-based hetero-
geneous programming models, we must have a systematic
approach that exposes more debugging information to pro-
grammers, but still at high-level. First, we need more intuitive
methods to narrow down the erroneous code regions. Second,
we need a traceability mechanism to attribute errors and
performance issues back to input directive programs. For these
goals, we have developed directive-based, interactive program
debugging techniques, which provide better interaction among
programmers, compilers, and runtimes [8]. Fig. 1 shows the
overall framework. In the proposed framework, the compiler
(OpenARC) automatically generates runtime codes necessary
for GPU-kernel verification and memory-transfer verification
and optimization. The GPU-kernel verification scheme, which
consists of compile-time code changes (Memory Transfer
Modification and Result-Comparison Transformation in Fig. 1)
and runtime checking (Output Verification in Fig. 1), locates
trouble-making kernels by comparing execution results at ker-
nel granularity. Figure 2 shows the overall kernel verification
process; for each target kernel to verify, 1) temporary buffers
are created to keep the kernel execution results, 2) both
the kernel and the original compute region are executed on
GPU and CPU respectively, and 3) the GPU outputs are
compared against the CPU output to verify the correctness
of the translated GPU kernel.

Fig. 2: Overall Kernel Verification Process

The Memory-transfer verification and optimization scheme,
which consists of compile-time code change (Runtime-Check
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Fig. 3: Runtime Coherence Checking to Detect Incorrect,
Missing, or Redundant Memory Transfer

Call Insertion in Fig. 1) and runtime checking (Runtime
Coherence Checking in Fig. 1), traces runtime status of CPU-
GPU coherence to detect incorrect/missing/redundant memory
transfers. Figure 3 shows the basic idea to detect incorrec-
t/missing/redundant memory transfers; a memory transfer is
1) incorrect if the source is stale, 2) missing if the status of
the data to access is stale while the other device has up-to-
date data, and 3) redundant if the destination data is either
up-to-date or dead (not used any more). Figure 4 illustrates

Fig. 4: Runtime Coherence Tracking Example

the runtime coherence tracking; when a user data is created,
the coherence states of CPU and GPU are initialized to not-
stale (step 1). If data is modified on a device, the state of
the other device should be set to stale (step 2, 6, 7). When the
data is transferred from one device to the other, the runtime can
detect whether the transfer is redundant or incorrect (step 3).
For each data access (step 2, 4, 5, 6, 7), the runtime can detect
missing transfers if the data to access is stale. However, we
may not always need memory transfers to update the stale data
if the data is either overwritten (step 7) or no more used (step
8). In these cases, the compiler or runtime may not be able to
decide whether it is safe to skip the memory transfers. which
requires user involvement. Therefore, the proposed framework
is designed as an iterative and interactive system, where users
interact with both the compiler and runtime by iteratively
fixing/optimizing incorrect kernels/memory transfers, based
on the runtime feedback, and applying the updates to the
input program via directives. However, a naive implementa-

tion of the coherence-based memory-transfer verification and
optimization scheme may suffer from large runtime checking
overhead. Moreover, a naive comparison of the GPU-kernel
verification scheme may not work due to inconsistent floating-
point precision between CPU and GPU. To address these
issues, we have developed several optimization techniques,
which can be found in the companion paper [8].

V. EVALUATION

In this section, we evaluate the OpenARC framework by
porting thirteen OpenACC programs from diverse applica-
tion domains (two NAS Parallel Benchmarks (CG and EP),
three kernel benchmarks (JACOBI, MATMUL and SPMUL),
and eight Rodinia Benchmarks [1] (BACKPROP, BFS, CFD,
HOTSPOT, KMEANS, LUD, NW, SRAD)) to CUDA GPUs.
For evaluation, two GPU systems are used; a platform with a
NVIDIA Tesla M2090 GPU and Intel Xeon X5600 host CPUs
is used to compare performance of OpenARC and the PGI
OpenACC compiler V13.6 (To compile OpenARC-generated
output CUDA programs, NVCC V5.0 and GCC V4.4.6 are
used.) To evaluate unified memory versions, the other platform
with a NVIDIA Tesla K40c and Intel Xeon E5520 was used,
which has NVCC V6.5 and GCC V4.4.7.
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(a) Performance Improvement
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(b) Memory Transfer Size Reduction

Fig. 5: Effect of the GPU Array Reduction on NVIDIA Tesla
M2090. The base version of EP uses the array decomposition
method, and that of KMEANS uses the CPU array reduc-
tion.(Both base versions and GPU array reduction versions are
translated by OpenARC.)

A. Effect of the GPU Array Reduction

This section demonstrates the effectiveness of OpenARC
as a research framework by showing an example study on the
effects of array reductions on the accelerator programming;
OpenARC supports an array reduction transformation as an
experimental feature to OpenACC, which performs a two-level
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tree reduction: a local parallel reduction within each thread
block, followed by a host-side global reduction across thread
blocks. Among the tested benchmarks, both EP and KMEANS
have array reduction patterns. Because the current OpenACC
standard does not allow array variables in a reduction clause,
those GPU array reductions had to be manually modified
to alternative patterns to be compatible with the OpenACC
standard. One way to replace the GPU array reduction is to
decompose it into a set of scalar reductions, which is feasible
if the length of the reduction array is short. The decomposition
method incurs more control-flow divergence than the GPU
array reduction due to conditional updates on scalar reduction
variables. The base OpenACC version of EP uses this method.
The other way is to let the CPU perform the array reduction
(CPU array reduction). In this method, each GPU thread works
on a local copy of the reduction array, and their local reduction
results should be transferred to the CPU so that the CPU
performs a global reduction on those local results, which
demands more memory transfers than the GPU array reduction.
The base OpenACC version of KMEANS uses this method.
Fig. 5b shows that the decomposition method (EP) does not
incur additional memory transfer overhead compared to the
GPU array reduction. However, EP in Fig. 5a indicates that
the decomposition method performs slightly worse than the
GPU array reduction, mainly due to the additional control-
flow divergence. KMEANS results suggest that the CPU array
reduction may incur non-trivial memory transfer overhead
(KMEANS in Fig. 5b), performing worse than the GPU array
reduction (KMEANS in Fig. 5a). The outperforming results
of the GPU array reduction in Fig. 5 suggests that adding
the array reduction feature to the OpenACC standard may be
necessary for both code portability and performance.

B. OpenARC Performance
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Fig. 6: Performance of OpenACC benchmarks ported by
OpenARC and by the PGI compiler on NVIDIA Tesla M2090.
The execution times are normalized to those of hand-written
CUDA versions. Lower is better.

Fig. 6 presents the performance of the OpenACC bench-
marks ported by the OpenARC compiler and the PGI compiler.
In the figure, execution times are normalized to those of man-
ual CUDA versions. For the benchmarks, to which correspond-
ing CUDA versions do not exist (JACOBI, SPMUL, EP, and
CG), locally developed CUDA versions were used. The figure
shows that on average, OpenARC-ported OpenACC programs

perform similarly to those ported by the PGI compiler, even
though OpenARC differs from the PGI compiler in several
ways; first, OpenARC allows more fine-grained control over
the overall translation and optimization processes, while the
PGI compiler implicitly performs most of optimizations, and
the user has little control over the translation. Second, very
high-level IRs in OpenARC allow to generate output CUDA
codes that are much more readable than those generated by
the PGI compiler, allowing more debuggability. On the other
hand, the PGI compiler provides more advanced optimizations
than OpenARC, such as an automatic tiling transformation to
exploit CUDA shared memory, which was the main reason for
the better performance of the PGI-generated versions in some
benchmarks.

The figure also indicates that the OpenACC programs that
are automatically ported by OpenARC and the PGI compiler
show performance compatible with the manual CUDA versions
in many cases. In the figure, normalized values less than one
(e.g., BACKPROP and SRAD) indicate that compiler-generated
versions perform better than the existing hand-written CUDA
versions. This unexpected worse performance of the manual
CUDA programs is mainly due to too much synchronization
overhead; the manual CUDA versions of BACKPROP and
SRAD heavily use CUDA shared memory, which requires
explicit synchronizations to keep the shared memory con-
sistency. However, the additional synchronization overheads
overwhelm the benefits of the shared memory caching. (Hard-
ware caching supported by the tested GPU also diminishes
the relative benefit of the manual caching.) However, the
excellent performance of the manual CUDA version of LUD
demonstrates the importance of complex manual optimizations.
The manual version of LUD partitions the input data into many
subsections and applies different software-caching techniques
to each subsection using complex thread-access patterns. The
standard OpenACC model does not provide a way to express
these complex data access patterns to exploit the CUDA shared
memory. However, extensions proposed in Sect. IV-B make it
possible to express those complex computations still in the
OpenACC codes, as shown in the following section.

C. OpenACC-e Performance

Table III compares the performance of LUD, NW, and
MATMUL ported by OpenARC and the PGI compiler, where
OpenACC-e refers to the extended OpenACC version trans-
lated by OpenARC. The table shows that OpenACC-e could
achieve nearly identical performance as the manual CUDA
version, demonstrating that the proposed directive extension
can effectively exploit architecture-specific features. However,
the proposed extension also exposes architectural details of
the target device to some extent, while it still hides complex
language syntax of low-level programming models. Moreover,
the static mapping required by the extended model may restrict
the implicit optimizations that the underlying compiler can
perform. This trade-off raises a question of right balance be-
tween productivity and performance. To answer this question,
more in-depth study on the directive-based programming will
be needed.
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TABLE III: Execution Time of LUD, NW, and MATMUL
Normalized to Manual CUDA Version

Benchmark PGI OpenARC OpenACC-e

LUD 12.8 31 1.3
NW 1.4 5 1.1

MATMUL 1.8 1.4 1

D. OpenACC Performance on Unified Memory

Figure 7 presents the performance of OpenACC versions
that utilize unified memory (Unified-Memory) and OpenACC
versions where memory transfers are explicitly optimized by
programmers using data directives (Separate-Memory). The
figure indicates that the unified memory provides both pro-
grammability and performance in many cases; except for
BACKPROP, EP, and MATMUL programs, simply using the
unified memory (Unified-Memory) could remove more than
90% of their execution times by removing redundant memory
transfers. This is because most of tested programs have good
localities; most of the tested programs have patterns where
data are copied from CPU to GPU at the entrance of the
outermost loop and remains in the GPU mostly during the
main loop computation. NAS Parallel Benchmark CG is a
good example demonstrating the power of unified-memory
programming. Even though CG contains more than thirty
kernels called across different function boundaries, difficult
to analyze optimal memory transfer patterns, the actual data
access patterns have very good localities; most of user data are
private to GPU, and only a few data need to be copied in at the
entrance of the main computation region. In this case, simply
replacing CPU malloc/free calls to those for unified-memory
management and letting the underlying system manage the
data transfers can achieve good performance comparable to
manually optimized version (Separate-Memory).

JACOBI and SRAD are the most interesting cases in
that Unified-Memory versions perform better than manually
optimized OpenACC versions (Separate-Memory). The tested
JACOBI benchmark verifies its computation by comparing
diagonal sum of the output array; in the standard OpenACC
version for separate-memory systems (Separate-Memory), the
whole output data should be copied from GPU to CPU after
the main computation finishes, since the diagonal sum has
sparse accesses throughout the whole array. However, in the
OpenACC version utilizing the unified memory, the underlying
memory management system copies data from GPU only if
CPU requests (full lazy copy), incurring much smaller amount
of data transfers than the Separate-Memory version. In SRAD,
a small subset of a logically two-dimensional array (J) are
copied from GPU to CPU at each iteration of the outermost
loop, but the location of the subset is decided at runtime, and
the data subset are discontinuous in the memory layout. There-
fore, the standard OpenACC version for separate-memory
systems copies the whole array (J) at each iteration. However,
the unified-memory version can copy only the accessed subset
thanks to the full lazy copy feature. Moreover, the main loop is
executed multiple times, resulting in much better performance
than the separate-memory version. JACOBI and SRAD cases
indicate that if only small random portion of data are accessed,
using the unified memory may perform much better than the

manual memory transfers using data clauses, demonstrating
that the hybrid scheme, proposed in Sect. IV-A, that combines
both unified-memory and separate-memory together can be
very effective on such types of applications.
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Fig. 7: Performance of OpenACC versions utilizing unified
memory (Unified-Memory) and OpenACC versions where pro-
grammers explicitly control memory transfers using data direc-
tives (Separate-Memory) on NVIDIA Tesla K40c. Execution
times are normalized to those of the naive, default memory
management scheme (no memory-transfer optimization).

VI. CONCLUSIONS

In this paper, we have presented an extensible OpenACC
compiler framework, called OpenARC. OpenARC is equipped
with various analysis and transformation tools, serving as
a powerful research framework to study various issues in
directive-based, heterogeneous computing, such as debugga-
bility, performance portability, tunability, scalability, etc. This
paper provides an overview of important design strategies and
several key techniques needed to implement a reference Ope-
nACC compiler. In addition, we demonstrated the efficacy of
OpenARC as a general research framework for directive-based,
high-level programming investigations by providing examples
of such prototypes; these examples include OpenACC exten-
sion to support hybrid programming of the unified memory
and separate memory and device-aware OpenACC extensions
to express architecture-specific features at high-level. Example
porting of three benchmarks (LUD, NW, and MATMUL), using
the extended OpenACC model provides an insight on the
right scope of the interaction between programming models
and compilers/runtimes. Porting thirteen standard OpenACC
benchmarks from diverse application domains shows that
OpenARC performs similarly to a commercial compiler, while
OpenARC provides more fine-grained control over the overall
translation and optimizations, suitable for various performance
optimization studies.
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