
Application Characterization using Oxbow Toolkit
and PADS Infrastructure

Sarat Sreepathi∗, M. L. Grodowitz∗, Robert Lim†, Philip Taffet‡
Philip C. Roth∗, Jeremy Meredith∗, Seyong Lee∗, Dong Li∗, Jeffrey Vetter∗

∗Oak Ridge National Laboratory, Oak Ridge, TN, USA

Email: {sarat,grodowitzml,rothpc,jsmeredith,lees2,lid1,vetter}@ornl.gov
†University of Oregon, Eugene, OR, USA

Email: roblim1@cs.uoregon.edu
‡Rice University, Houston, TX, USA

Email: ptaffet@rice.edu

Abstract—Characterizing the behavior of a scientific ap-
plication and its associated proxy application is essential for
determining whether the proxy application actually does mimic
the full application. To support our ongoing characterization
activities, we have developed the Oxbow toolkit and an associated
data store infrastructure for collecting, storing, and querying
this characterization information. This paper presents recent
updates to the Oxbow toolkit and introduces the Oxbow project’s
Performance Analytics Data Store (PADS). To demonstrate the
possible insights when using the toolkit and data store, we com-
pare the characterizations of several full and proxy applications,
along with the High Performance Linpack (HPL) and High
Performance Conjugate Gradient (HPCG) benchmarks. Using
techniques such as cluster visualizations of PADS data across
many experiments, we found that the results show unexpected
similarities and differences between proxy applications, and a
greater similarity of proxy applications to HPCG than to HPL
along many dimensions.

I. INTRODUCTION

Roadmaps for extreme scale high performance computing
(HPC) systems [1], [2] forecast significant changes to system
architectures, forcing dramatic changes to HPC software in
order to achieve good performance and power efficiency. To
make these changes efficiently and effectively, the behavior
of applications that will run on future extreme scale systems
must be understood at a deeper level than is possible using
only traditional metrics such as execution speed. With bet-
ter understanding of their applications’ behaviors, application
designers can provide more precise statements of their ap-
plications’ computation and communication requirements, and
identify new ways to improve execution along dimensions of
performance, power, and reliability. With better information
about application requirements, extreme scale system designers
can tailor their designs to better satisfy the applications’
requirements. This co-design of hardware and software has the
potential for substantial improvements in scientific computing
productivity.

To support the characterization of scientific applications,
we have developed the Oxbow toolkit and Performance An-
alytics Data Store (PADS). The Oxbow toolkit provides a
variety of mechanisms to collect information about applica-
tions’ static and dynamic characteristics, and about the systems
on which they execute. PADS provides an infrastructure for
tracking this information across different experiments, over

changes in application versions, and between systems. PADS
also provides a web-based visualization portal accessible at
oxbow.ornl.gov by following the “Portal” link at the top of
the page. Many figures presented in this paper were generated
using this web interface.

To focus on specific application-system interactions and to
control access to applications from sensitive domains, HPC
co-design researchers often develop “proxy” applications that
mimic real application behavior along one or more dimensions,
but use a smaller code base [3]. Since its inception, a primary
goal of the Oxbow project has been to study how well
proxy applications mimic their respective full applications in
practice [4].

In this paper, we provide new insights into current co-
design proxy applications produced by the various U.S. De-
partment of Energy (DOE) Co-design centers. We also contex-
tualize these proxy applications by comparing their behavior
to other benchmarks, micro-kernels, and full applications of
interest to DOE and other extreme scale scientific computing
centers. Table I shows the list of full applications and proxy
applications which have been profiled and uploaded to our data
store.

The rest of the paper is organized as follows. After
discussing some existing work in application characterization
in Section II, we detail the Oxbow project tools, metrics
used for our characterization studies, the design of the PADS
infrastructure, and the expected workflow of the toolchain
in Section III. Section IV presents our characterizations of

TABLE I: Profiled applications grouped by co-design set

Source Benchmark

CESAR XSBench, RSBench, NEKBONE, NEKmk

ExaCT Exp CNS NoSpec, Multigrid C, vodeDriver

ExMatEx LULESH

LLNL ASC AMG2013, AMGmk, MCB, UMT2013, UMTmk

Mantevo miniAMR, miniFE

Full Application LAMMPS, eavl, VisIt, Nek5000, QMCPack

Other
Benchmark

HPL, HPCG, KMI Hash, GFMCmk, HACCmk

2014 Hardware-Software Co-Design for High Performance Computing

978-1-4799-7564-8/14 $31.00 © 2014 IEEE

DOI 10.1109/Co-HPC.2014.11

55

computation and communication behavior of the proxy ap-
plications, microkernels, and benchmarks listed in Table I.
In Section V, we summarize the findings of our application
characterization studies and outline some directions for future
work with PADS and the Oxbow toolkit.

II. PREVIOUS & RELATED WORK

In our earlier study using Oxbow [4], we reported on
characterizations of several co-design applications. This work
extends our previous work with new characterization results,
a description of new analysis techniques such as clustering of
application characterization data, and a description of our new
data storage infrastructure and its web-based interface.

The MIAMI Toolkit [5] used in previous Oxbow work
has been augmented and has become an independent software
package. As in our earlier Oxbow work, we use the Oxbow
version of MIAMI for studying an application’s dynamic
instruction mix. Like other Oxbow tools (see Section III), our
version of MIAMI is integrated into the Oxbow tools build
system. It is integrated into the common Oxbow execution
and upload infrastructure.

The Tuning and Analysis Utilities (TAU) [6] has a per-
formance database [7] which is tightly coupled to the TAU
ecosystem. TAU provides in-depth application analysis. Our
work is complementary to this effort, focusing on extracting
high level inter-application comparisons from a combination
of experimental metrics.

Similarly, HPCToolkit [8] provides data storage and visual-
ization on a local system for the purpose of in-depth analysis.
In contrast, the Oxbow data store is intended to be shared and
available over the Internet to multiple users.

Scalasca [9] collects large amounts of communication
data and can analyze this data to automatically identify
communication-related performance problems. In contrast, the
mpiP library used in Oxbow is a lightweight profiling tool
used to generate statistics and communication topology data.
In Oxbow, we use this communication data to compare com-
munication patterns and data transfer volumes across different
applications and their input sets.

Other approaches to understand application characteristics
require running applications on various different platforms and
simulations to compare performance metrics [10], [11]. Our
work complements such efforts by 1) providing architecture
independent characterization and 2) maintaining experimental
platform attributes in our data store to correlate performance
results with specific systems.

Compiler based tools, such as PALM [12] and Byfl [13],
can generate application models from source code. These
require specific compiler toolchains. Oxbow works with a wide
range of program development toolchains and includes support
for the profiling of pre-compiled system libraries linked to an
application’s executable program.

III. OXBOW PROJECT METHODOLOGY

Figure 1 shows the workflow used to perform the study
presented in this paper. First, the Oxbow toolkit is installed
on the target compute platform. Some number of applications

Fig. 1: Overall Oxbow + PADS Workflow

are compiled and executed using a variety of tools to profile
computation, communication, and memory behavior. In addi-
tion to runtime metrics, we collect source code characteristics
that are correlated with any experiments using that source. The
system itself is also profiled to determine hardware features.

Once data has been collected on the target platform, it is
uploaded to the data store. When data is uploaded, it is tagged
with meta-data to allow sorting, analysis, and retrieval of
experiments by information such as date, application version,
or other user defined naming information.

Any data in the data store will be dynamically visualized
through the web portal. Users can explore their data and
compare it with data from other applications. The web portal
can also be used to upload and download experiment data
through a browser.

A. Application Characterization

Oxbow can be used to evaluate application with a variety of
different metrics using different tools and methods. This flex-
ibility is useful when studying co-design applications that are
meant to model only a specific behavior of a parent application.
For example, one would not need to examine communication
data for a proxy application that is only modeling memory
access patterns.

TABLE II: Instruction Micro-operation descriptions.

Category Description

BrOps Conditional/unconditional branches; direct and indirect jumps
FpOps Scalar floating-point arithmetic
FpSIMD Vector floating-point arithmetic
IntOps Scalar integer arithmetic
IntSIMD Vector integer arithmetic
MemOps Scalar load and store operations
MemSIMD Vector load and store operations
Moves Integer and floating-point register copies; data type and pre-

cision conversions
Misc Other miscellaneous operations, including pop count, memory

fence, atomic operations, privileged operations

56

Computation Profiling: The computational profile of an
application execution is described by the mix of executed
micro-operations. These are not instruction counts, which
would be specific to a given ISA, but the breakdown of x86
instructions into their components.

The decoding and breaking down of instructions is done
using the MIAMI toolkit [5]. MIAMI is an extensible set of
tools built on top of the PIN dynamic binary instrumentation
tools from Intel [14]. The details of how instructions are
decoded and analyzed is described previously in [4].

Micro-operations are grouped into coarser categories which
are listed in table II. At a high level, operations are grouped
into memory, control, and arithmetic. The categorization is
based on which type of microarchitectural components are
needed to support each type. Based on the categorization we
are able to say, for example, whether a code is using vector
arithmetic units.

Communication Analysis: Since we are targeting current
parallel scientific applications, communication analysis is done
by analyzing the application use of the MPI library. Oxbow
uses version 3.3 of the mpiP lightweight MPI profiling library.
The Oxbow version of mpiP includes several not-yet-released
updates to this library to collect data about all point-to-
point and collective communication between MPI ranks in a
computation.

The volume of data transferred between ranks is output
in an adjacency matrix. This can be visualized to see the
communication topology for an application run. For example,
a perfect symmetry across the diagonal represents a zero-
noise communication pattern common to many benchmarks,
whereas real applications may display more asymmetrical
communication between ranks.

Memory Behavior Measurement: Oxbow includes several
metrics to measure memory behavior, including bandwidth and
a reuse distance metric to estimate data locality. These metrics
are not used in this work, but are detailed here [4] and on the
Oxbow web site.

Source Code Analysis: A recently added feature allows
Oxbow to perform static analysis on application sources. Given
a set of source files, the toolkit will determine languages used,
lines of code, types of parallelism, number of functions and
cyclomatic complexity. This is collected once for a source tree,
and will be correlated to any experiments using that source.

Software cyclomatic complexity uses the constructed con-
trol flow graph of a software module to derive a measure of the
amount of decision logic required by the software. Cyclomatic
complexity is defined by McCabe et al. [15] for each module
to be e− n+ 2, where e and n are the number of edges and
nodes in the control flow graph, respectively.

B. System Statistics Collection

During install and configuration, Oxbow probes a target
compute architecture to detect hardware features. The analysis
is done using low-level Linux probes that are available on
most HPC clusters. Currently, the analysis uses /proc/cpu,
cpuid and lshw calls, which are available on most HPC
Linux cluster environments.

Fig. 2: PADS Architecture

Oxbow also includes a third-party tool, hwloc [16], that
generates an abstract diagram of architectural topology includ-
ing cache size and structure. Table III shows the information
collected for our experimental platform, which is displayed
through our web portal.

In addition to maintaining provenance information for
experiments run on each platform, system analysis generates a
machine description file for the MIAMI toolkit. Previously, this
file had to be hand-generated by consulting a manual for each
system to determine hardware features such as cache hierarchy
and specific instruction set support.

C. Performance Analytics Data Store (PADS) Design Goals

Between system profiles, code profiles, and experimental
results, Oxbow produces a large amount of data to be stored,
reviewed, and correlated. To handle this task, we have deployed
the PADS (Performance Analytics Data Store) with associated
web portal that are tied to the Oxbow toolkit. We have
identified several important goals to be addressed by this data
store architecture to allow usability and future extensibility.

Enable New Insights: The primary goal of an online data
store is to collect together many different experimental results
in a common location for the purpose of better understand-
ing applications. An example of this use is the hierarchi-
cal/agglomerative clustering analysis described in section III-F.

Flexible Data Model: The data store should accommodate
diverse data formats that emanate from performance tools. The
data model needs to account for evolution of schema as tool
outputs change as well as addition of new tools and metrics.

Transparency: An open access model allows domain scien-
tists, computer scientists and other stakeholders to collaborate
effectively. Researchers typically strive to publish relevant
experiment data as an addendum to their technical publications.
Although such mechanisms satisfy the transparency goal, such
data is not easily accessible for programmatic analysis.

Accessibility: The PADS data infrastructure was designed
to facilitate easy access by a variety of clients. It supports
use cases ranging from summary reports meant for human
consumption to programmer friendly APIs for custom analysis
of raw data.

57

D. PADS Architecture

The PADS architecture is shown in Figure 2. PADS is built
on MongoDB [17], a well established, open-source, NoSQL
solution to provide a flexible data model. MongoDB uses a
schema-less database design. Software logic ensures that the
state of the data model at any point in time is kept in sync
with the application logic that powers the PADS web portal and
other database tools. Changes in the data model are expected
and handled gracefully, without invalidating older stored data.

Failover, Monitoring & Backup: PADS is deployed as a
replicated database configuration to provide failover capability
with one primary and two secondary databases. If the primary
goes down, one of the secondary databases takes over ensuring
continued database function. Continuous monitoring of the
database and application server infrastructure is put in place for
performing usage analytics, understanding load characteristics
as well as immediate notification of any problems. Automated
nightly backups of the entire database to on-site attached
network storage allows recovery from catastrophic hardware
failure.

Web Portal: A visual analytics portal allows users to
interactively explore the performance data in PADS. The portal
is deployed on an application server and utilizes Python web
technologies to power the backend functionality, and database
connectivity is provided through a lighweight REST API [18].
Modern client-side web technologies including JavaScript,
AJAX, Bootstrap [19], jqPlot [20] and HTML5 allow for a
rich web experience that supports desktop and mobile browser
access.

The replicated database and application server powering the
web portal are both behind a site-wide firewall and shielded
from direct Internet access by a gateway server.

E. Potential Use Cases

The separation of concerns between toolkit, database, and
web portal allows users varying levels of effort and control. A
user can use default tool configurations and browser uploads to
collect information from a desktop and explore results online.
With the same infrastructure, a user can become very familiar
with the raw data output from a given tool, and use command
line access to store and retrieve experiment results that they
analyze with their own custom toolchain.

Online availability also allows remote collaborations. Con-
sider the scenario where a domain scientist working with

TABLE III: Platform information

Attribute Value

Model Name Intel(R) Xeon(R) CPU X5660 @ 2.80GHz

Core Speed 2800 MHZ

Cores 6 cores

L1 data (per core) 32KB

L1 instruction (per core) 32KB

L2 (per core) 256KB

L3 (shared) 12MB

a particular application is the best person to choose input
parameters for an application. Vendors or systems researchers
might want to study that application, but might not choose the
most representative configurations for experiments. The ability
to easily compare expected results in an open data store would
reduce the chance of erroneous results or wasted efforts.

F. Multivariate Application Clustering

With the growing amount of results in the PADS data
store, making comparisons with traditional scatter or line
plots quickly becomes overwhelming. We use a hierarchi-
cal/agglomerative clustering approach to more easily identify
similarities across different applications using any number of
normalized metrics.

A notable advantage of this approach over similar tech-
niques like k-means clustering is the ability to omit explicit
specification of the number of clusters a priori. Hence, the
hierarchical clustering analysis is more amenable to identifi-
cation of the natural number of clusters in the given dataset.

The algorithm begins with a forest of clusters that will
finally form a hierarchical tree. At the outset, each data point
forms its own cluster. When two clusters a, b from this forest
are combined into a single cluster c, a and b are removed from
the forest, and c is added to the forest. When only one cluster
remains in the forest, the algorithm stops, and this cluster
becomes the root.

The output of this process is a dendogram [21] tree image
that groups applications by similarity and indicates a measure
of similarity between application groupings.

IV. APPLICATION INSIGHTS

This section presents computational and communication
patterns of proxy applications in various configurations in
comparison to top supercomputing benchmarks – HPCG and
HPL.

A. Comparison of HPCG, HPL, and Proxy Applications

Figure 3 shows a comparison of micro-operation ratios
for High Performance Linpack (HPL), version 2.1 of High

Fig. 3: Mix of Instruction Micro-operations for HPCG, HPL,
microkernel and proxy applications

58

Fig. 4: Mix of Instruction Micro-operations for CESAR proxy
applications and HPCG

Performance Conjugate Gradient (HPCG), three microkernel
benchmarks (denoted with mk), and three proxy applications
from various areas. These selections were made to show a large
range of application types for comparison.

Figure 4 compares the proxy applications from the CE-
SAR co-design center with HPCG and HPL. Each application
instruction counts are represented as percentages. This normal-
izes the instruction counts for each application to a set of real
numbers that sum to 100.

These comparisons were made to compare both the tradi-
tional and new top500 benchmarks with the behavior of proxy
applications and kernels. Benchmarks like HPL and HPCG
have typically influenced HPC system design decisions. A
reason given for launching an alternative HPCG-based top500
list is to generate rankings based on more realistic scientific
application behavior.

The results we collected for instruction mix show that the
HPL results are very different than all of the other experiments.
Even the microkernels, which isolate computation from other
phases, show at most 15% floating point SIMD instructions.
HPL shows 60% floating point SIMD instructions due to the
efficient vectorization the very regular computation particular
to this type of dense linear solver.

By comparison, HPCG presents a much more represen-
tative mix of computational requirements. In each category,
it falls somewhere between the peaks of highs and lows,
with average amounts of floating point, integer, memory, and
control. It does not currently present a large percentage of
SIMD operations, but we expect this to change as it becomes
more optimized over time.

Though we made these comparisons to investigate behavior
of proxy applications and benchmarks, other observations can
be made using the same data set.

A surprising secondary result here is the similarity between
the profiles of KMI-Hash and UMTmk. KMI Hash is a data-
centric application benchmark that represents genome assem-
bly and mapping analysis. UMTmk is the most CPU intensive
kernel from the UMT radiation transport proxy application.
Based on this similarity, CPU resource requirements of com-
pute intensive sections of KMI Hash are represented by the

UMT microkernel.

B. Application Clustering: Instruction Mix

Line graphs of micro-operation mixes were shown in
section IV-A to compare applications. These graphs become
hard to read with a relatively small number of results. To
generate a more rich diagram of application similarity, we
used a hierarchical/agglomerative clustering over all instruction
categories.

This type of clustering uses a distance metric to measure
the difference between each experiment. A tree is built it-
eratively. At every iteration, each cluster is joined together
with the nearest neighboring clusters, resulting in the final
relational hierarchy. In general, a distance metric for this type
of clustering can be any function.

In this case, we defined distance as the euclidean distance
in 9-dimensional space between points at the coordinates de-
fined by the percentage-wise instruction mix of an experiment.

The following equation defines our distance metric between
two experiments, α and β. Each experiment has a set of
instruction percentages, I , which are a set of numbers that
sum to 100, and represent the categories of micro-operations
defined in table II.

√√√√
iα∈Iα,iβ∈Iβ∑

(iα − iβ)2

Figure 5 shows the results of listed along the axes of
previous figures and in table II. The leaves of the dendogram
represent data points, and are labeled with a string concatena-
tion of application name and experiment name (a user defined
value).

A user defined cut-off threshold truncates leaves below
certain level to aggregate into a finite number of clusters.
Figure 5 shows a cutoff threshold of the euclidean distance
62 (vertical line at 62 on the x-axis) to identify nine clusters.

Leaves under a common branch are more similar to each
other than leaves under a different branch. The vertical branch-
ing points represent a relative degree of difference between
branches. For example, clusters 7 and 8 show more similarity
to each other than they do to cluster 9. Drout and Smith [21]
provide a good introduction to dendrogram interpretation.

In Fig. 5, it is interesting to note that HPCG and VisIt be-
long to the same cluster and mostly differ in the percentage of
Int SIMD and FlOps instructions. Moreover, VisIt is an outlier
among the instruction mix profiles wherein it exhibits 10.26%
Int SIMD instructions and the next highest is HACCmk
with 2.18% Int SIMD instructions. In this specific problem
configuration, VisIt performed an isosurface operation.

The data store contains a large number of different ex-
periments with different goals. Some users look for different
configurations of thread count, as in the HACCmk:N threads
experiments. Other users look at different problem inputs, as
in the miniAMR experiments. Combining this jumble of data
together lets someone search freely for correlations.

59

Fig. 5: Hierarchical Clustering Results. The numbers indicates the cluster assignment if we aggregate leaves in the same sub-tree.

Fig. 6: Instruction Mix of Micro-operations for HPCG, HPL, and three configurations of miniAMR

Fig. 7: Instruction Mix of Micro-operations for HPCG, HPL, and three proxy applications

60

For example, the results of running miniAMR with the
three different recommended problem types are close together,
as expected, but the difference in length between the subtree
for expanding sphere and the other two problem types is rather
large.

Using the web portal, those experiments are selected along
with HPL and HPCG, and the image in figure 6 is dynamically
generated. It is clear that the expanding sphere experiment has
very low floating point operations and less memory access than
the other two scenarios. We also note that all three scenarios
have many more memory operations than either HPCG or
HPL. This is all accomplished in less than 10 minutes of using
the web portal, rather than generating graphs by hand until
something interesting appears.

C. Communication Behavior

When visiting the communication page of the web portal,
any uploaded mpiP communication volume data are visualized
as heat maps such as those shown in figure 8. The images on
the left include mouse-over data and a boxplot of data range
as it appears on the web portal.

The communication volume graphs of HPL (Fig. 8c and
HPCG (Fig. 8a) show that the communication patterns of these
two benchmarks are very different. HPL has communication
distributed evenly throughout all ranks. Hovering the mouse
over (55,15) shows that large amounts of data are being
communicated, whereas no other application here shows any
communication between those ranks.

Again, HPL shows heavily optimized, atypical behavior. In
this case, it would favor an architecture that provided a large
amount of point-to-point bandwidth over the entire machine.
By contrast, the rest of the applications here, including HPCG
have hierarchical communication that would favor a system
with higher bandwidth between nodes hosting neighboring
ranks.

LULESH (Fig. 8b) in particular appears nearly identical to
HPCG in terms of communication. According to the LULESH
documentation, it is not meant to be very interesting in terms
of communication, and should scale its stencil computation
easily to very large machines. HPCG has a similar goal, but
stresses both computation and memory, as bottlenecks, over
communication.

A different pattern emerges in miniAMR (Fig. 8e) and
MCB (Fig. 8f), which darken toward the origin, showing an
all-to-one reduction that funnels data to rank 1. Running the
mouse cursor along the bottom of the x-axis of miniAMR
shows each rank sending data to rank 1, with a periodic
darkening indicating a tree reduction. This type of commu-
nication is not represented by HPCG. MCB is meant to test
OpenMP+MPI scalability, and tests it in a very different way
than HPCG.

Having found these patterns in the communication data, it
is easy to generate the micro-operation chart in figure 7 from
the data store. While LULESH and HPCG have the same com-
munication structure, they differ in processing requirements. In
particular, LULESH is more memory operation intensive than
HPCG.

Finally, an application’s communication behavior is highly
dependent on the problem domain and specific experiment
configuration. For instance, there is notable change in com-
munication behavior for miniAMR for different experiments
(Fig. 9).

Fig. 9: Communication behavior of miniAMR with different
problem configurations (two moving spheres:16 ranks, expand-
ing sphere:64 ranks, sphere moving diagonally:27 ranks)

D. Using Oxbow in Co-design efforts

Recently, this infrastructure resulted in an improvement to
a proxy application. In this case, we collected results from an
application, which resulted in communication patterns which
were very different than expected. The original team was
contacted, and they reviewed the results through the web portal
at their home location.

As a result, the application was redistributed to us with an
improved test input parameter set and build system changes to
drive the behavior toward the expected application behavior.

The real contribution of this work is the ability to ”close
the loop” in a codesign effort, by providing easily accessible,
high level views of application behavior.

V. CONCLUSIONS & FUTURE WORK

The Oxbow toolkit and data store infrastructure is currently
undergoing testing by friendly users. An upcoming public
release will make the software available to the broader co-
design community.

We have shown that even with large number of experi-
ments, the web portal and data store allow a user to easily
identify interesting correlations. Having found interesting sets
of experiments, the user can drill-down into those details.

We propose this as a platform for information dissemina-
tion and a vehicle for collaboration between domain scientists,
applied mathematicians, computer scientists, and hardware
architects.

ACKNOWLEDGMENT

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research.

This material presents work performed by Oak Ridge Na-
tional Laboratory, which is managed by UT-Battelle, LLC un-
der Contract #DE-AC05-00OR22725 to the U.S. Government.
Accordingly, the U.S. Government retains a non-exclusive,
royalty-free license to publish or reproduce the published
form of this contribution, or allow others to do so, for U.S.
Government purposes.

61

(a) HPCG communication volume with boxplot and mouse-over data (b) LULESH communication volume

(c) HPL communication volume with boxplot and mouse-over data (d) Multigrid C communication volume

(e) miniAMR:expanding-sphere communication volume with boxplot and
mouse-over data

(f) MCB communication volume

Fig. 8: Communication Volume for 64 rank executions of two benchmarks and two proxy applications

62

REFERENCES

[1] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C. Andre,
D. Barkai, J.-Y. Berthou, T. Boku, B. Braunschweig, F. Cappello,
B. Chapman, X. Chi, A. Choudhary, S. Dosanjh, T. Dunning, S. Fiore,
A. Geist, B. Gropp, R. Harrison, M. Hereld, M. Heroux, A. Hoisie,
K. Hotta, Z. Jin, Y. Ishikawa, F. Johnson, S. Kale, R. Kenway,
D. Keyes, B. Kramer, J. Labarta, A. Lichnewsky, T. Lippert, B. Lucas,
B. Maccabe, S. Matsuoka, P. Messina, P. Michielse, B. Mohr, M. S.
Mueller, W. E. Nagel, H. Nakashima, M. E. Papka, D. Reed, M. Sato,
E. Seidel, J. Shalf, D. Skinner, M. Snir, T. Sterling, R. Stevens, F. Streitz,
B. Sugar, S. Sumimoto, W. Tang, J. Taylor, R. Thakur, A. Trefethen,
M. Valero, A. van der Steen, J. Vetter, P. Williams, R. Wisniewski,
and K. Yelick, “The international exascale software project roadmap,”
International Journal of High Performance Computing Applications,
vol. 25, no. 1, pp. 3–60, 2011.

[2] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally,
M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp,
S. Keckler, D. Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott,
A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale com-
puting study: Technology challenges in achieving exascale systems,”
DARPA Information Processing Techniques Office, Tech. Rep., 2008.

[3] R. F. Barrett, S. Borkar, S. S. Dosanjh, S. D. Hammond, M. A. Heroux,
X. S. Hu, J. Luitjens, S. G. Parker, J. Shalf, and L. Tang, “On the Role
of Co-design in High Performance Computing,” vol. 24, pp. 141 – 155.

[4] J. S. Vetter, S. Lee, D. Li, G. Marin, C. McCurdy, J. Meredith, P. C.
Roth, and K. Spafford, “Quantifying Architectural Requirements of
Contemporary Extreme-Scale Scientific Applications,” in International
Workshop on Performance Modeling, Benchmarking and Simulation of
HPC Systems (PMBS13), Denver, CO, 2013.

[5] G. Marin, J. Dongarra, and D. Terpstra, “MIAMI: A framework for
application performance diagnosis,” in IEEE International Symposium
on Performance Analysis of Systems and Software, 2014.

[6] S. S. Shende and A. D. Malony, “The TAU parallel performance
system,” International Journal of High Performance Computing Ap-
plications, vol. 20, no. 2, pp. 287–311, 2006.

[7] K. A. Huck, A. D. Malony, R. Bell, and A. Morris, “Design and im-
plementation of a parallel performance data management framework,”
in Parallel Processing, 2005. ICPP 2005. International Conference on.
IEEE, 2005, pp. 473–482.

[8] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “HPCToolkit: Tools for performance anal-
ysis of optimized parallel programs,” Concurrency and Computation:
Practice and Experience, vol. 22, no. 6, pp. 685–701, 2010.

[9] M. Geimer, F. Wolf, B. J. Wylie, E. Ábrahám, D. Becker, and B. Mohr,
“The Scalasca performance toolset architecture,” Concurrency and
Computation: Practice and Experience, vol. 22, no. 6, pp. 702–719,
2010.

[10] C. Vaughan, M. Rajan, R. Barrett, D. Doerfler, and K. Pedretti, “In-
vestigating the impact of the Cielo Cray XE6 architecture on scientific
application codes,” in Parallel and Distributed Processing Workshops
and Phd Forum (IPDPSW), 2011 IEEE International Symposium on.
IEEE, 2011, pp. 1831–1837.

[11] S. Dosanjh, R. Barrett, D. Doerfler, S. Hammond, K. Hemmert, M. Her-
oux, P. Lin, K. Pedretti, A. Rodrigues, T. Trucano et al., “Exascale
design space exploration and co-design,” Future Generation Computer
Systems, vol. 30, pp. 46–58, 2014.

[12] N. R. Tallent and A. Hoisie, “Palm: easing the burden of analytical
performance modeling,” in Proceedings of the 28th ACM international
conference on Supercomputing. ACM, 2014, pp. 221–230.

[13] S. Pakin, “Byfl: Analysis of low-level application characteristics,” Los
Alamos National Laboratory (LANL), Tech. Rep., 2011.

[14] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” in Proceedings
of the 2005 ACM SIGPLAN conference on Programming language
design and implementation, ser. PLDI ’05. New York, NY, USA:
ACM, 2005, pp. 190–200.

[15] T. J. McCabe and A. H. Watson, “Software complexity,” Crosstalk,
Journal of Defense Software Engineering, vol. 7, no. 12, pp. 5–9, 1994.

[16] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,

G. Mercier, S. Thibault, and R. Namyst, “hwloc: a Generic Framework
for Managing Hardware Affinities in JHPC Applications,” IEEE 18th
Euromicro Conference on Parallel, Distributed and Network-based
Processing, 2010.

[17] “MongoDB - open-source NoSQL document database,” http://mongodb.
org, 2014.

[18] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[19] “Bootstrap - HTML, CSS, and JS framework,” http://getbootstrap.com/,
2014.

[20] “jqPlot - JavaScript plotting library,” http://jqplot.com/, 2014.

[21] M. Drout and L. Smith, “How to read a dendro-
gram?” http://wheatoncollege.edu/lexomics/files/2012/08/
How-to-Read-a-Dendrogram-Web-Ready.pdf, 2014.

63

