
Advanced Application Support for Improved
GPU Utilization on Keeneland

Jeff Young, M. Graham Lopez, Mitch Horton

Jeffrey Vetter, Project Director

Dick Glassbrook, Deputy Project Director

1

http://keeneland.gatech.edu

http://keeneland.gatech.edu/

Why Worry About GPU Utilization?
2

• Supercomputing resources are limited
– XSEDE requests regularly exceed availability and Keeneland

remains 70-80% utilized (including downtime)

• Users on Keeneland are charged per GPU hour, not
by CPU hours, so effective GPU usage is key
– 1 wall-time hour = 3 SUs = 16 SUs on a CPU-centric system

• For administrators, GPU utilization provides a good
indicator of how accelerated applications are
being used

Better GPU utilization translates to more available time for all
users as well as reduced queuing times!

Keeneland Background
3

• Five-year, Track 2D NSF grant awarded in
August 2009

– Led by Georgia Tech (GT) in collaboration with
NICS, UT, and ORNL

• Two Systems: KIDS and KFS
– Keeneland Initial Delivery System in 2010

• 120 HP SL390 nodes for application prototyping

 and initial experiments

– Keeneland Full-Scale System in 2012
• 264 HP SL250 nodes for production experiments

using GPUs

• Each System has 3 M2090 NVIDIA GPUs
per node

– KIDS: 2x Intel Westmere CPUs, QDR IB

– KFS: 2x Sandy Bridge CPUs, FDR IB

Keeneland – Full Scale System
Keeneland Full Scale (KFS) system installed in
October 2012

• 264 HP SL250 G8 nodes in 11 compute racks

• 792 M2090 GPUs contribute to aggregate system peak of
~615 TF

• Over 200 users, 150 projects using KFS

ProLiant SL250 G8
(2CPUs, 3GPUs)

S6500 Chassis
(4 Nodes)

Rack
(6 Chassis)

M2090

Xeon E5-2670

Mellanox 384p FDR InfiniBand Switch

Integrated with NICS
Datacenter Lustre and XSEDE

Full PCIeG3 X16
bandwidth to all GPUs

166

GFLOPS

665

GFLOPS

2327

GFLOPS

32/18 GB

9308

GFLOPS

55848

GFLOPS

614450

GFLOPS

http://keeneland.gatech.edu

J.S. Vetter, R. Glassbrook et al., “Keeneland: Bringing heterogeneous GPU computing to the computational science community,” IEEE

Computing in Science and Engineering, 13(5):90-5, 2011, http://dx.doi.org/10.1109/MCSE.2011.83.

Keeneland System
(11 Compute Racks)

http://keeneland.gatech.edu/
http://dx.doi.org/10.1109/MCSE.2011.83

Keeneland Users and Applications
5

• Two types of support for these users
– NICS provides general user support

– GT focuses on advanced application support
(AAS), also sometimes referred to as Extended
Collaborative Support Service (ECSS)

• Two classes of users on Keeneland
– Power Users and Developers: Experienced with

accelerator-based programming and parallel codes;
Many of these prototyped new GPU-based apps
using KIDS

– Production and Scientific Users: Typically use or
slightly modify existing accelerated software and
packages to satisfy experimental requirements

• Heavy usage by chemistry, biosciences, and
material sciences research

Applications by

Scientific Area (KFS)

Challenges for Effective GPU Utilization

6

• Keeneland’s node design
creates programming
challenges

– Asymmetric number of
accelerators

– PCI Express bus limits
host to device
performance

– QPI link between nodes limits GPU-specific optimizations like
GPUDirect

• GPUDirect Peer to Peer limited to GPUs 1 and 2

• GPUDirect RDMA performance is best with GPU 0 (Kepler-class GPUs)

Measuring GPU Utilization
7

• Builds on NICS tools which correlate job numbers
with GPU utilization across multiple nodes

– described at XSEDE ’12

• NVIDIA’s Management Library (NVML) is used to
pull usage snapshots every 5 minutes

– Can be integrated with monitoring toolsets like Ganglia

• Monthly reports are used to

 assist users with low GPU

 utilization

T. Samuel, S. McNally, J. Wynkoop, “An Analysis of GPU Utilization Trends on the Keeneland Initial Delivery System,” XSEDE 2012

Image from https://developer.nvidia.com/ganglia-monitoring-system

AAS for Improved GPU Utilization
8

• 3 application scenarios we recently assisted with

– HOOMD

– NAMD

– MILC

• In addition, AAS has helped to develop and debug
scalable applications for GPU systems

– BEAST/BEAGLE

– SDSC Earthquake code

– G. Lopez, Brownian Dynamic Simulations with
Hydrodynamic Interactions on GPUs, XSEDE ‘14

AAS for Improved GPU Utilization
9

• 3 applications we recently assisted with

– HOOMD

– NAMD

– MILC

% KFS Workload by Number of GPUs Used

HOOMD

• In Spring 2013, a spike in 1 GPU jobs was traced to
users of a single-GPU version of HOOMD-Blue

10

% KFS Workload by Number of GPUs Used – Conversations with
the HOOMD
developers led to
testing and
installation of a pre-
release, multi-GPU
version of HOOMD

HOOMD Results

• Strong scaling for HOOMD standard benchmarks shows that 3
GPU jobs provide double the performance on one node

• Performance scaling depends on problem size

11

HOOMD-Blue Strong Scaling on KIDS

NAMD

• Stats indicated that one user was running a large
number of 1 GPU jobs from Nov. – Dec. 2013

12

% KFS Workload by Number of GPUs Used

• This user was using
efficiency feedback
from Moab’s
showq command
to specify job
parameters

• But Moab doesn’t
effectively account
for GPU usage!

NAMD Results

• Moab efficiency is based on CPU core utilization but is still “beta” for GPUs

• The best performance results from letting Charm++ allocate 10 CPU cores
(on KIDS) and all GPUs!

– Provided speedups of ~4.25x on KIDS and more on KFS

13

NAMD Performance and Moab Efficiency on KIDS

Experimental Parameters
-20 ps simulated
-3000 atoms
-Walltime for experiments:
25.2 s to 134.8 s

MILC (MIMD Lattice Computation)

• A MILC user with a 2-GPU experimental setup was
responsible for ¼ of all charged SUs in March 2014

14

% KFS Workload by Number of GPUs Used

• This user was
uncertain as to
whether 2 GPU or 3
GPU jobs were
more efficient for
multi-node exp.

• Also, some input
data sets were not
divisible by 3 GPUs!

MILC – 2 GPUs vs. 3 GPUs

• 2 node, 3 GPU jobs are most efficient in terms of SU usage

• 4 node jobs provide the best completion time/SU tradeoff

• Communication costs for the 3rd GPU make 2 GPU jobs more appealing
at higher node counts

15

Num. Nodes 3 GPU Speedup %
2 GPU SUs

Used
3 GPU SUs

Used

1 25.13 6.38 4.78

2 6.26 5.87 5.50

4 7.36 9.46 8.76

8 -8.39 10.00 10.84

24/16 -23.91 19.56 24.24

Experimental Parameters
-ks_measure application
-Compiled with SciDAC-2
and QUDA 0.5.0
-400 iterations

MILC – A New Problem

• What if our input data set is divisible by 3 instead of 2?
– For instance, a 32x32x32 lattice can be divided by 2 GPUs but not 3

• What if we schedule multiple applications within the same job?
– The CUDA-enabled MILC library, QUDA, doesn’t support this

16

MILC Co-scheduling of Applications (1)

• Submit two separate jobs that each use 2 GPUs
– Finishes quickly.. but doesn’t use GPUs or SUs effectively

– May experience more queuing delay on a busy system

17

MILC Co-scheduling of Applications (2)

• Submit 1 job with an application pinned to each CPU socket
– Use numactl within the job to pin applications to sockets, expose GPUs

– Makes good use of GPUs.. but the app on 1 GPU takes almost twice as
long to finish!

18

MILC Co-scheduling of Applications (3)

• Submit 1 job with asymmetric, pinned applications
– Neither application limits runtime and utilization remains high

19

MILC Co-scheduling of Applications (3)

• Submit 1 job with asymmetric, pinned applications
– Neither application limits runtime and utilization remains high

20

– Application imbalance can be mitigated by swapping numbers of
iterations and CPU socket

MILC Updated Job Script
How do we implement this?

1. qsub launch_combined_job.pbs

2. launch_combined_job.pbs

1. Generate two MPI rankfiles, one for each application

2. Launch two scripts to pin and run each application:

 ./multi_gpu_exec.sh $NUM_ITER0 $RANKFILE0 $SKT

 ./multi_gpu_exec.sh $NUM_ITER1 $RANKFILE1 $SKT

3. multi_gpu_exec.sh

1. Pin application to a socket and expose GPUs connected to a specific
socket. For example, for SKT=1:

 numactl --membind=1 --physcpubind=1,3,5,7,9,11

 cudavisible=“CUDA_VISIBLE_DEVICES=1,2”

2. Run application across multiple, pinned sockets using MPI

 mpirun -x $CUDAVISIBLE --rankfile $RANKFILE1 … ks_measure

21

MILC Co-scheduled Results

• Asymmetric mapping of applications optimizes
across walltime, SUs used, and GPU utilization

22

Num. Nodes Test Type Time (Hrs) Experiments / SU GPU Utilization (%)

1 2 GPU 33.22 481.69 55.67

2 2 GPU 16.39 488.13 52.33

1 Coscheduled 27.13 589.82 62.00

2 Coscheduled 16.53 483.91 63.67

1 Asymmetric 21.16 756.12 74.33

2 Asymmetric 13.03 614.19 82.00

Experimental Parameters
-ks_measure application
with 32x32x32 input lattice
-Compiled with SciDAC-2
and QUDA 0.5.0
-800 iterations across 2
applications

Revisiting GPU Utilization
23

• Small amounts of AAS for the biggest users can
dramatically improve GPU utilization
– Less than 5 different cases resulted in improvement of 3 GPU

utilization to 91%

% KFS Workload by Number of GPUs Used

Support for Application Development

• SDSC Earthquake Code, AWP-ODC
– During KIDS phase, the Keeneland AAS team helped to debug an

undocumented CUDA synchronization bug

– Final version of this code achieved ideal weak scaling on Keeneland
and also on Titan using 952 GPUs

– More info in Zhou, J., et al., Multi-GPU Implementation of a 3D
Finite Difference Time Domain Earthquake Code on Heterogeneous
Supercomputers, Procedia Computer Science, 18 (2013)

• BEAST/BEAGLE
– Markov chain Monte Carlo method used to infer likely evolutionary

trees for nucleotides, amino acids, and codons

– More info in Horton, M., “BEAST/BEAGLE Phylogenetics Software”,
GTC 2014

24

BEAST/BEAGLE
25

• Keeneland AAS consulted on the development of a scalable MPI
implementation as well as a custom CUDA kernel for matrix exponentiation

– Both optimizations led to good strong scaling across almost the GPUs in KFS!

BEAST/BEAGLE Strong Scaling on KFS
BEAST/BEAGLE Matrix

Exponentiation Weak Scaling

Lessons Learned

• Administrators

– GPU utilization can be an indicator of how users interact with the system and
can be used to find any potential problems

– Maximizing usage of the system takes intervention

• But a small amount can go a long way

– Different interaction strategies are needed for power users and normal
scientific users

• AAS/ECSS can be a key component in assisting scientific users

• Users

– SUs aren’t unlimited! Using them wisely is important and optimizing for a
system’s accelerators can make a big impact.

– Don’t believe all the system-level statistics without checking them against
other key metrics (e.g., walltime or steps/sec.)

– Don’t be afraid to ask for assistance with your application/package!

26

Acknowledgments

• Thanks to Jesse Hanley and NICS for continued
Keeneland support and updated GPU utilization
statistics.

• Thanks to all the developers and users who have
helped to make Keeneland a GPU computing
success!

27

Questions?
28

Jeffrey Vetter, Project Director Jeff Young, Keeneland AAS

vetter@gatech.edu jyoung9@gatech.edu

For more information, go to
http://keeneland.gatech.edu

mailto:vetter@gatech.edu
mailto:jyoung9@gatech.edu

